Cargando…
ResBCDU-Net: A Deep Learning Framework for Lung CT Image Segmentation
Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmenta...
Autores principales: | Jalali, Yeganeh, Fateh, Mansoor, Rezvani, Mohsen, Abolghasemi, Vahid, Anisi, Mohammad Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796094/ https://www.ncbi.nlm.nih.gov/pubmed/33401581 http://dx.doi.org/10.3390/s21010268 |
Ejemplares similares
-
Skin Cancer Diagnosis Based on Neutrosophic Features with a Deep Neural Network
por: Singh, Sumit Kumar, et al.
Publicado: (2022) -
COVID‐19 CT image segmentation based on improved Res2Net
por: Liu, Shangwang, et al.
Publicado: (2022) -
Clinical target segmentation using a novel deep neural network: double attention Res-U-Net
por: Ashkani Chenarlogh, Vahid, et al.
Publicado: (2022) -
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
por: Zhao, Tongtong, et al.
Publicado: (2023) -
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
por: Abedalla, Ayat, et al.
Publicado: (2021)