Cargando…

Multi-Layer Wear and Tool Life Calculation for Forging Applications Considering Dynamical Hardness Modeling and Nitrided Layer Degradation

As one of the oldest shaping manufacturing processes, forging and especially hot forging is characterized by extreme loads on the tool. The thermal load in particular is able to cause constant changes in the hardness of the surface layer, which in turn has a decisive influence on the numerical estim...

Descripción completa

Detalles Bibliográficos
Autores principales: Behrens, Bernd-Arno, Brunotte, Kai, Wester, Hendrik, Rothgänger, Marcel, Müller, Felix
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796124/
https://www.ncbi.nlm.nih.gov/pubmed/33383737
http://dx.doi.org/10.3390/ma14010104
Descripción
Sumario:As one of the oldest shaping manufacturing processes, forging and especially hot forging is characterized by extreme loads on the tool. The thermal load in particular is able to cause constant changes in the hardness of the surface layer, which in turn has a decisive influence on the numerical estimation of wear. Thus, also during numerical wear, modeling hardness changes need to be taken into account. Within the scope of this paper, a new implementation of a numerical wear model is presented, which, in addition to dynamic hardness models for the base material, can also take into account the properties of a nitride wear protection layer as a function of the wear depth. After a functional representation, the new model is applied to the wear calculation of a multi-stage industrial hot forging process. The applicability of the new implementation is validated by the evaluation of the occurring hardness, wear depths and the locally associated removal of the wear protection layer. Consecutively, a tool life calculation module based on the calculated wear depth is implemented and demonstrated. In general, a good agreement of the results is achieved, making the model suitable for detailed 2D as well as large 3D Finite Element calculations.