Cargando…
SynPo-Net—Accurate and Fast CNN-Based 6DoF Object Pose Estimation Using Synthetic Training
Estimation and tracking of 6DoF poses of objects in images is a challenging problem of great importance for robotic interaction and augmented reality. Recent approaches applying deep neural networks for pose estimation have shown encouraging results. However, most of them rely on training with real...
Autores principales: | Su, Yongzhi, Rambach, Jason, Pagani, Alain, Stricker, Didier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796199/ https://www.ncbi.nlm.nih.gov/pubmed/33466293 http://dx.doi.org/10.3390/s21010300 |
Ejemplares similares
-
INV-Flow2PoseNet: Light-Resistant Rigid Object Pose from Optical Flow of RGB-D Images Using Images, Normals and Vertices
por: Fetzer, Torben, et al.
Publicado: (2022) -
Identification of the Solid Stem Suppressor Gene Su-TdDof in Synthetic Hexaploid Wheat Syn-SAU-117
por: Li, Hui, et al.
Publicado: (2023) -
CNN with Pose Segmentation for Suspicious Object Detection in MMW Security Images
por: Meng, Zhichao, et al.
Publicado: (2020) -
From IR Images to Point Clouds to Pose: Point Cloud-Based AR Glasses Pose Estimation
por: Firintepe, Ahmet, et al.
Publicado: (2021) -
6DoF Pose Estimation of Transparent Object from a Single RGB-D Image
por: Xu, Chi, et al.
Publicado: (2020)