Cargando…

Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats

The current study was designed to explore the in vitro nephrotoxic potential of four 3,5-dichloroaniline (3,5-DCA) metabolites (3,5-dichloroacetanilide, 3,5-DCAA; 3,5-dichlorophenylhydroxylamine, 3,5-DCPHA; 2-amino-4,6-dichlorophenol, 2-A-4,6-DCP; 3,5-dichloronitrobenzene, 3,5-DCNB) and to determine...

Descripción completa

Detalles Bibliográficos
Autores principales: Rankin, Gary O., Racine, Christopher R., Valentovic, Monica A., Anestis, Dianne K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796304/
https://www.ncbi.nlm.nih.gov/pubmed/33396638
http://dx.doi.org/10.3390/ijms22010292
_version_ 1783634650568065024
author Rankin, Gary O.
Racine, Christopher R.
Valentovic, Monica A.
Anestis, Dianne K.
author_facet Rankin, Gary O.
Racine, Christopher R.
Valentovic, Monica A.
Anestis, Dianne K.
author_sort Rankin, Gary O.
collection PubMed
description The current study was designed to explore the in vitro nephrotoxic potential of four 3,5-dichloroaniline (3,5-DCA) metabolites (3,5-dichloroacetanilide, 3,5-DCAA; 3,5-dichlorophenylhydroxylamine, 3,5-DCPHA; 2-amino-4,6-dichlorophenol, 2-A-4,6-DCP; 3,5-dichloronitrobenzene, 3,5-DCNB) and to determine the renal metabolism of 3,5-DCA in vitro. In cytotoxicity testing, isolated kidney cells (IKC) from male Fischer 344 rats (~4 million/mL, 3 mL) were exposed to a metabolite (0–1.5 mM; up to 90 min) or vehicle. Of these metabolites, 3,5-DCPHA was the most potent nephrotoxicant, with 3,5-DCNB intermediate in nephrotoxic potential. 2-A-4,6-DCP and 3,5-DCAA were not cytotoxic. In separate experiments, 3,5-DCNB cytotoxicity was reduced by pretreating IKC with antioxidants and cytochrome P450, flavin monooxygenase and peroxidase inhibitors, while 3,5-DCPHA cytotoxicity was attenuated by two nucleophilic antioxidants (glutathione and N-acetyl-L-cysteine). Incubation of IKC with 3,5-DCA (0.5–1.0 mM, 90 min) produced only 3,5-DCAA and 3,5-DCNB as detectable metabolites. These data suggest that 3,5-DCNB and 3,5-DCPHA are potential nephrotoxic metabolites and may contribute to 3,5-DCA induced nephrotoxicity in vivo. In addition, the kidney can bioactivate 3,5-DCNB to toxic metabolites, and 3,5-DCPHA appears to generate reactive metabolites to contribute to 3,5-DCA nephrotoxicity. In vitro, N-oxidation of 3,5-DCA appears to be the primary mechanism of bioactivation of 3,5-DCA to nephrotoxic metabolites.
format Online
Article
Text
id pubmed-7796304
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-77963042021-01-10 Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats Rankin, Gary O. Racine, Christopher R. Valentovic, Monica A. Anestis, Dianne K. Int J Mol Sci Article The current study was designed to explore the in vitro nephrotoxic potential of four 3,5-dichloroaniline (3,5-DCA) metabolites (3,5-dichloroacetanilide, 3,5-DCAA; 3,5-dichlorophenylhydroxylamine, 3,5-DCPHA; 2-amino-4,6-dichlorophenol, 2-A-4,6-DCP; 3,5-dichloronitrobenzene, 3,5-DCNB) and to determine the renal metabolism of 3,5-DCA in vitro. In cytotoxicity testing, isolated kidney cells (IKC) from male Fischer 344 rats (~4 million/mL, 3 mL) were exposed to a metabolite (0–1.5 mM; up to 90 min) or vehicle. Of these metabolites, 3,5-DCPHA was the most potent nephrotoxicant, with 3,5-DCNB intermediate in nephrotoxic potential. 2-A-4,6-DCP and 3,5-DCAA were not cytotoxic. In separate experiments, 3,5-DCNB cytotoxicity was reduced by pretreating IKC with antioxidants and cytochrome P450, flavin monooxygenase and peroxidase inhibitors, while 3,5-DCPHA cytotoxicity was attenuated by two nucleophilic antioxidants (glutathione and N-acetyl-L-cysteine). Incubation of IKC with 3,5-DCA (0.5–1.0 mM, 90 min) produced only 3,5-DCAA and 3,5-DCNB as detectable metabolites. These data suggest that 3,5-DCNB and 3,5-DCPHA are potential nephrotoxic metabolites and may contribute to 3,5-DCA induced nephrotoxicity in vivo. In addition, the kidney can bioactivate 3,5-DCNB to toxic metabolites, and 3,5-DCPHA appears to generate reactive metabolites to contribute to 3,5-DCA nephrotoxicity. In vitro, N-oxidation of 3,5-DCA appears to be the primary mechanism of bioactivation of 3,5-DCA to nephrotoxic metabolites. MDPI 2020-12-30 /pmc/articles/PMC7796304/ /pubmed/33396638 http://dx.doi.org/10.3390/ijms22010292 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rankin, Gary O.
Racine, Christopher R.
Valentovic, Monica A.
Anestis, Dianne K.
Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats
title Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats
title_full Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats
title_fullStr Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats
title_full_unstemmed Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats
title_short Nephrotoxic Potential of Putative 3,5-Dichloroaniline (3,5-DCA) Metabolites and Biotransformation of 3,5-DCA in Isolated Kidney Cells from Fischer 344 Rats
title_sort nephrotoxic potential of putative 3,5-dichloroaniline (3,5-dca) metabolites and biotransformation of 3,5-dca in isolated kidney cells from fischer 344 rats
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796304/
https://www.ncbi.nlm.nih.gov/pubmed/33396638
http://dx.doi.org/10.3390/ijms22010292
work_keys_str_mv AT rankingaryo nephrotoxicpotentialofputative35dichloroaniline35dcametabolitesandbiotransformationof35dcainisolatedkidneycellsfromfischer344rats
AT racinechristopherr nephrotoxicpotentialofputative35dichloroaniline35dcametabolitesandbiotransformationof35dcainisolatedkidneycellsfromfischer344rats
AT valentovicmonicaa nephrotoxicpotentialofputative35dichloroaniline35dcametabolitesandbiotransformationof35dcainisolatedkidneycellsfromfischer344rats
AT anestisdiannek nephrotoxicpotentialofputative35dichloroaniline35dcametabolitesandbiotransformationof35dcainisolatedkidneycellsfromfischer344rats