Cargando…
On the Effect of Training Convolution Neural Network for Millimeter-Wave Radar-Based Hand Gesture Recognition
The purpose of this paper was to investigate the effect of a training state-of-the-art convolution neural network (CNN) for millimeter-wave radar-based hand gesture recognition (MR-HGR). Focusing on the small training dataset problem in MR-HGR, this paper first proposed to transfer the knowledge wit...
Autores principales: | Zhang, Kang, Lan, Shengchang, Zhang, Guiyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796334/ https://www.ncbi.nlm.nih.gov/pubmed/33401744 http://dx.doi.org/10.3390/s21010259 |
Ejemplares similares
-
Dynamic Gesture Recognition Based on FMCW Millimeter Wave Radar: Review of Methodologies and Results
por: Tang, Gaopeng, et al.
Publicado: (2023) -
Dynamic Gesture Recognition Model Based on Millimeter-Wave Radar With ResNet-18 and LSTM
por: Zhang, Yongqiang, et al.
Publicado: (2022) -
mm-TPG: Traffic Policemen Gesture Recognition Based on Millimeter Wave Radar Point Cloud
por: Dang, Xiaochao, et al.
Publicado: (2023) -
Millimeter-Wave Array Radar-Based Human Gait Recognition Using Multi-Channel Three-Dimensional Convolutional Neural Network
por: Jiang, Xinrui, et al.
Publicado: (2020) -
Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG
por: Asif, Ali Raza, et al.
Publicado: (2020)