Cargando…

The Virasoro fusion kernel and Ruijsenaars’ hypergeometric function

We show that the Virasoro fusion kernel is equal to Ruijsenaars’ hypergeometric function up to normalization. More precisely, we prove that the Virasoro fusion kernel is a joint eigenfunction of four difference operators. We find a renormalized version of this kernel for which the four difference op...

Descripción completa

Detalles Bibliográficos
Autor principal: Roussillon, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Netherlands 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796901/
https://www.ncbi.nlm.nih.gov/pubmed/33479555
http://dx.doi.org/10.1007/s11005-020-01351-4
Descripción
Sumario:We show that the Virasoro fusion kernel is equal to Ruijsenaars’ hypergeometric function up to normalization. More precisely, we prove that the Virasoro fusion kernel is a joint eigenfunction of four difference operators. We find a renormalized version of this kernel for which the four difference operators are mapped to four versions of the quantum relativistic hyperbolic Calogero–Moser Hamiltonian tied with the root system [Formula: see text] . We consequently prove that the renormalized Virasoro fusion kernel and the corresponding quantum eigenfunction, the (renormalized) Ruijsenaars hypergeometric function, are equal.