Cargando…
A deep learning approach to identify smoke plumes in satellite imagery in near real-time for health risk communication
BACKGROUND: Wildland fire (wildfire; bushfire) pollution contributes to poor air quality, a risk factor for premature death. The frequency and intensity of wildfires are expected to increase; improved tools for estimating exposure to fire smoke are vital. New generation satellite-based sensors produ...
Autores principales: | Larsen, Alexandra, Hanigan, Ivan, Reich, Brian J., Qin, Yi, Cope, Martin, Morgan, Geoffrey, Rappold, Ana G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796988/ https://www.ncbi.nlm.nih.gov/pubmed/32719441 http://dx.doi.org/10.1038/s41370-020-0246-y |
Ejemplares similares
-
Deep Learning for satellite imagery
por: Boget, Yoann
Publicado: (2019) -
Deep learning-based object recognition in multispectral satellite imagery for real-time applications
por: Gudžius, Povilas, et al.
Publicado: (2021) -
Differences in the Estimation of Wildfire-Associated Air Pollution by Satellite Mapping of Smoke Plumes and Ground-Level Monitoring
por: Fadadu, Raj P., et al.
Publicado: (2020) -
Deep Learning for Understanding Satellite Imagery: An Experimental Survey
por: Mohanty, Sharada Prasanna, et al.
Publicado: (2020) -
Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes
por: Djurhuus, Anni, et al.
Publicado: (2017)