Cargando…
Predicting regulatory variants using a dense epigenomic mapped CNN model elucidated the molecular basis of trait-tissue associations
Assessing the causal tissues of human complex diseases is important for the prioritization of trait-associated genetic variants. Yet, the biological underpinnings of trait-associated variants are extremely difficult to infer due to statistical noise in genome-wide association studies (GWAS), and bec...
Autores principales: | Pei, Guangsheng, Hu, Ruifeng, Dai, Yulin, Manuel, Astrid Marilyn, Zhao, Zhongming, Jia, Peilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797043/ https://www.ncbi.nlm.nih.gov/pubmed/33300042 http://dx.doi.org/10.1093/nar/gkaa1137 |
Ejemplares similares
-
TSEA-DB: a trait–tissue association map for human complex traits and diseases
por: Jia, Peilin, et al.
Publicado: (2020) -
CSEA-DB: an omnibus for human complex trait and cell type associations
por: Dai, Yulin, et al.
Publicado: (2020) -
Decoding whole-genome mutational signatures in 37 human pan-cancers by denoising sparse autoencoder neural network
por: Pei, Guangsheng, et al.
Publicado: (2020) -
Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics
por: Pei, Guangsheng, et al.
Publicado: (2019) -
Dense module searching for gene networks associated with multiple sclerosis
por: Manuel, Astrid M., et al.
Publicado: (2020)