Cargando…
Machine learning-based prediction models for accidental hypothermia patients
BACKGROUND: Accidental hypothermia is a critical condition with high risks of fatal arrhythmia, multiple organ failure, and mortality; however, there is no established model to predict the mortality. The present study aimed to develop and validate machine learning-based models for predicting in-hosp...
Autores principales: | Okada, Yohei, Matsuyama, Tasuku, Morita, Sachiko, Ehara, Naoki, Miyamae, Nobuhiro, Jo, Takaaki, Sumida, Yasuyuki, Okada, Nobunaga, Watanabe, Makoto, Nozawa, Masahiro, Tsuruoka, Ayumu, Fujimoto, Yoshihiro, Okumura, Yoshiki, Kitamura, Tetsuhisa, Iiduka, Ryoji, Ohtsuru, Shigeru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797142/ https://www.ncbi.nlm.nih.gov/pubmed/33422146 http://dx.doi.org/10.1186/s40560-021-00525-z |
Ejemplares similares
-
Prognostic ability of the sequential organ failure assessment score in accidental hypothermia: a multi-institutional retrospective cohort study
por: Kandori, Kenji, et al.
Publicado: (2019) -
The development and validation of a “5A” severity scale for predicting in-hospital mortality after accidental hypothermia from J-point registry data
por: Okada, Yohei, et al.
Publicado: (2019) -
Correction to: The development and validation of a “5A” severity scale for predicting in-hospital mortality after accidental hypothermia from J-point registry data
por: Okada, Yohei, et al.
Publicado: (2019) -
Clinical relevance of impaired consciousness in accidental hypothermia: a Japanese multicenter retrospective study
por: Fukuda, Masahiro, et al.
Publicado: (2022) -
Impact of rewarming rate on the mortality of patients with accidental hypothermia: analysis of data from the J-Point registry
por: Watanabe, Makoto, et al.
Publicado: (2019)