Cargando…
Predicting Alzheimer’s disease progression using deep recurrent neural networks()
Early identification of individuals at risk of developing Alzheimer’s disease (AD) dementia is important for developing disease-modifying therapies. In this study, given multimodal AD markers and clinical diagnosis of an individual from one or more timepoints, we seek to predict the clinical diagnos...
Autores principales: | Nguyen, Minh, He, Tong, An, Lijun, Alexander, Daniel C., Feng, Jiashi, Yeo, B.T. Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797176/ https://www.ncbi.nlm.nih.gov/pubmed/32763427 http://dx.doi.org/10.1016/j.neuroimage.2020.117203 |
Ejemplares similares
-
Predictive Modeling of the Progression of Alzheimer’s Disease with Recurrent Neural Networks
por: Wang, Tingyan, et al.
Publicado: (2018) -
Meta-matching as a simple framework to translate phenotypic predictive models from big to small data
por: He, Tong, et al.
Publicado: (2022) -
Predictive modelling of Parkinson’s disease progression based on RNA-Sequence with densely connected deep recurrent neural networks
por: Ahmed, Siraj, et al.
Publicado: (2022) -
Predicting improved protein conformations with a temporal deep recurrent neural network
por: Pfeiffenberger, Erik, et al.
Publicado: (2018) -
Prediction of mRNA subcellular localization using deep recurrent neural networks
por: Yan, Zichao, et al.
Publicado: (2019)