Cargando…
Computer-Generated Three-Dimensional Airway Models as a Decision-Support Tool for Preoperative Evaluation and Procedure-Planning in Pediatric Anesthesiology
Technology improvements have rapidly advanced medicine over the last few decades. New approaches are constantly being developed and utilized. Anesthesiology strongly relies on technology for resuscitation, life-support, monitoring, safety, clinical care, and education. This manuscript describes a re...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797200/ https://www.ncbi.nlm.nih.gov/pubmed/33426609 http://dx.doi.org/10.1007/s10916-020-01698-0 |
Sumario: | Technology improvements have rapidly advanced medicine over the last few decades. New approaches are constantly being developed and utilized. Anesthesiology strongly relies on technology for resuscitation, life-support, monitoring, safety, clinical care, and education. This manuscript describes a reverse engineering process to confirm the fit of a medical device in a pediatric patient. The method uses virtual reality and three-dimensional printing technologies to evaluate the feasibility of a complex procedure requiring one-lung isolation and one-lung ventilation. Based on the results of the device fit analysis, the anesthesiology team confidently proceeded with the operation. The approach used and described serves as an example of the advantages available when coupling new technologies to visualize patient anatomy during the procedural planning process. |
---|