Cargando…

Short‐term hypoxia does not promote arrhythmia during voluntary apnea

The presence of bradycardic arrhythmias during volitional apnea at altitude may be caused by chemoreflex activation/sensitization. We investigated whether bradyarrhythmic episodes became prevalent in apnea following short‐term hypoxia exposure. Electrocardiograms (ECG; lead II) were collected from 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Busch, Stephen A., van Diepen, Sean, Roberts, Richard, Steele, Andrew R., Berthelsen, Lindsey F., Smorschok, Megan P., Bourgoin, Cody, Steinback, Craig D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797307/
https://www.ncbi.nlm.nih.gov/pubmed/33426815
http://dx.doi.org/10.14814/phy2.14703
Descripción
Sumario:The presence of bradycardic arrhythmias during volitional apnea at altitude may be caused by chemoreflex activation/sensitization. We investigated whether bradyarrhythmic episodes became prevalent in apnea following short‐term hypoxia exposure. Electrocardiograms (ECG; lead II) were collected from 22 low‐altitude residents (F = 12; age=25 ± 5 years) at 671 m. Participants were exposed to normobaric hypoxia (Spo (2) ~79 ± 3%) over a 5‐h period. ECG rhythms were assessed during both free‐breathing and maximal volitional end‐expiratory and end‐inspiratory apnea at baseline during normoxia and hypoxia exposure (20 min [AHX]; 5 h [HX5]). Free‐breathing HR became elevated at AHX (78 ± 10 bpm; p < 0.0001) and HX5 (80 ± 12 bpm; p < 0.0001) compared to normoxia (68 ± 10 bpm), whereas apnea caused significant bradycardia at AHX (nadir end‐expiratory −17 ± 14 bpm; p < 0.001) and HX5 (nadir end‐expiratory −19 ± 15 bpm; p < 0.001), but not during normoxia (nadir end‐expiratory −4 ± 13 bpm), with no difference in bradycardia responses between apneas at AHX and HX5. Conduction abnormalities were noted in five participants during normoxia (Premature Ventricular Contraction, Sinus Pause, Junctional Rhythm, Atrial Foci), which remained unchanged during apnea at AHX and HX5 (Premature Ventricular Contraction, Premature Atrial Contraction, Sinus Pause). End‐inspiratory apneas were overall longer across conditions (normoxia p < 0.05; AHX p < 0.01; HX5 p < 0.001), with comparable HR responses to end‐expiratory and fewer occurrences of arrhythmia. While short‐term hypoxia is sufficient to elicit bradycardia during apnea, the occurrence of arrhythmias in response to apnea was not affected. These findings indicate that previously observed bradyarrhythmic events in untrained individuals at altitude only become prevalent following chronic hypoxia specificlly.