Cargando…
ACE-2-interacting Domain of SARS-CoV-2 (AIDS) Peptide Suppresses Inflammation to Reduce Fever and Protect Lungs and Heart in Mice: Implications for COVID-19 Therapy
COVID-19 is an infectious respiratory illness caused by the virus strain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and until now, there is no effective therapy against COVID-19. Since SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) for entering into host cells, to targe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797355/ https://www.ncbi.nlm.nih.gov/pubmed/33426604 http://dx.doi.org/10.1007/s11481-020-09979-8 |
Sumario: | COVID-19 is an infectious respiratory illness caused by the virus strain severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and until now, there is no effective therapy against COVID-19. Since SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) for entering into host cells, to target COVID-19 from therapeutic angle, we engineered a hexapeptide corresponding to the ACE2-interacting domain of SARS-CoV-2 (AIDS) that inhibits the association between receptor-binding domain-containing spike S1 and ACE-2. Accordingly, wild type (wt), but not mutated (m), AIDS peptide inhibited SARS-CoV-2 spike S1-induced activation of NF-κB and expression of IL-6 in human lungs cells. Interestingly, intranasal intoxication of C57/BL6 mice with recombinant SARS-CoV-2 spike S1 led to fever, increase in IL-6 in lungs, infiltration of neutrophils into the lungs, arrhythmias, and impairment in locomotor activities, mimicking some of the important symptoms of COVID-19. However, intranasal treatment with wtAIDS, but not mAIDS, peptide reduced fever, protected lungs, improved heart function, and enhanced locomotor activities in SARS-CoV-2 spike S1-intoxicated mice. Therefore, selective targeting of ACE2-to-SARS-CoV-2 interaction by wtAIDS may be beneficial for COVID-19. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11481-020-09979-8. |
---|