Cargando…
Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1
BACKGROUND & AIMS: Notch signaling coordinates cell differentiation processes in the intestinal epithelium. The transcription factor Nrf2 orchestrates defense mechanisms by regulating cellular redox homeostasis, which, as shown previously in murine liver, can be amplified through signaling cross...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797379/ https://www.ncbi.nlm.nih.gov/pubmed/32896624 http://dx.doi.org/10.1016/j.jcmgh.2020.08.013 |
_version_ | 1783634857032679424 |
---|---|
author | Yagishita, Yoko McCallum, Melissa L. Kensler, Thomas W. Wakabayashi, Nobunao |
author_facet | Yagishita, Yoko McCallum, Melissa L. Kensler, Thomas W. Wakabayashi, Nobunao |
author_sort | Yagishita, Yoko |
collection | PubMed |
description | BACKGROUND & AIMS: Notch signaling coordinates cell differentiation processes in the intestinal epithelium. The transcription factor Nrf2 orchestrates defense mechanisms by regulating cellular redox homeostasis, which, as shown previously in murine liver, can be amplified through signaling crosstalk with the Notch pathway. However, interplay between these 2 signaling pathways in the gut is unknown. METHODS: Mice modified genetically to amplify Nrf2 in the intestinal epithelium (Keap1(f/f)::VilCre) were generated as well as pharmacological activation of Nrf2 and subjected to phenotypic and cell lineage analyses. Cell lines were used for reporter gene assays together with Nrf2 overexpression to study transcriptional regulation of the Notch downstream effector. RESULTS: Constitutive activation of Nrf2 signaling caused increased intestinal length along with expanded cell number and thickness of enterocytes without any alterations of secretory lineage, outcomes abrogated by concomitant disruption of Nrf2. The Nrf2 and Notch pathways in epithelium showed inverse spatial profiles, where Nrf2 activity in crypts was lower than villi. In progenitor cells of Keap1(f/f)::VilCre mice, Notch downstream effector Math1, which regulates a differentiation balance of cell lineage through lateral inhibition, showed suppressed expression. In vitro results demonstrated Nrf2 negatively regulated Math1, where 6 antioxidant response elements located in the regulatory regions contributed to this repression. CONCLUSIONS: Activation of Nrf2 perturbed the dialog of the Notch cascade though negative regulation of Math1 in progenitor cells, leading to enhanced enterogenesis. The crosstalk between the Nrf2 and Notch pathways could be critical for fine-tuning intestinal homeostasis and point to new approaches for the pharmacological management of absorptive deficiencies. |
format | Online Article Text |
id | pubmed-7797379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77973792021-01-15 Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1 Yagishita, Yoko McCallum, Melissa L. Kensler, Thomas W. Wakabayashi, Nobunao Cell Mol Gastroenterol Hepatol Original Research BACKGROUND & AIMS: Notch signaling coordinates cell differentiation processes in the intestinal epithelium. The transcription factor Nrf2 orchestrates defense mechanisms by regulating cellular redox homeostasis, which, as shown previously in murine liver, can be amplified through signaling crosstalk with the Notch pathway. However, interplay between these 2 signaling pathways in the gut is unknown. METHODS: Mice modified genetically to amplify Nrf2 in the intestinal epithelium (Keap1(f/f)::VilCre) were generated as well as pharmacological activation of Nrf2 and subjected to phenotypic and cell lineage analyses. Cell lines were used for reporter gene assays together with Nrf2 overexpression to study transcriptional regulation of the Notch downstream effector. RESULTS: Constitutive activation of Nrf2 signaling caused increased intestinal length along with expanded cell number and thickness of enterocytes without any alterations of secretory lineage, outcomes abrogated by concomitant disruption of Nrf2. The Nrf2 and Notch pathways in epithelium showed inverse spatial profiles, where Nrf2 activity in crypts was lower than villi. In progenitor cells of Keap1(f/f)::VilCre mice, Notch downstream effector Math1, which regulates a differentiation balance of cell lineage through lateral inhibition, showed suppressed expression. In vitro results demonstrated Nrf2 negatively regulated Math1, where 6 antioxidant response elements located in the regulatory regions contributed to this repression. CONCLUSIONS: Activation of Nrf2 perturbed the dialog of the Notch cascade though negative regulation of Math1 in progenitor cells, leading to enhanced enterogenesis. The crosstalk between the Nrf2 and Notch pathways could be critical for fine-tuning intestinal homeostasis and point to new approaches for the pharmacological management of absorptive deficiencies. Elsevier 2020-09-05 /pmc/articles/PMC7797379/ /pubmed/32896624 http://dx.doi.org/10.1016/j.jcmgh.2020.08.013 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original Research Yagishita, Yoko McCallum, Melissa L. Kensler, Thomas W. Wakabayashi, Nobunao Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1 |
title | Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1 |
title_full | Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1 |
title_fullStr | Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1 |
title_full_unstemmed | Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1 |
title_short | Constitutive Activation of Nrf2 in Mice Expands Enterogenesis in Small Intestine Through Negative Regulation of Math1 |
title_sort | constitutive activation of nrf2 in mice expands enterogenesis in small intestine through negative regulation of math1 |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797379/ https://www.ncbi.nlm.nih.gov/pubmed/32896624 http://dx.doi.org/10.1016/j.jcmgh.2020.08.013 |
work_keys_str_mv | AT yagishitayoko constitutiveactivationofnrf2inmiceexpandsenterogenesisinsmallintestinethroughnegativeregulationofmath1 AT mccallummelissal constitutiveactivationofnrf2inmiceexpandsenterogenesisinsmallintestinethroughnegativeregulationofmath1 AT kenslerthomasw constitutiveactivationofnrf2inmiceexpandsenterogenesisinsmallintestinethroughnegativeregulationofmath1 AT wakabayashinobunao constitutiveactivationofnrf2inmiceexpandsenterogenesisinsmallintestinethroughnegativeregulationofmath1 |