Cargando…

GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors

Background The overwhelming majority of published articles have taken colon and rectal cancer as a single group, i.e., colorectal cancer, when normalizing gene expression data with housekeeping genes (HKG) in quantitative polymerase chain reaction (qPCR) experiments though there are published report...

Descripción completa

Detalles Bibliográficos
Autores principales: Vermani, Litika, Kumar, Rajeev, Senthil Kumar, Nachimuthu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797410/
https://www.ncbi.nlm.nih.gov/pubmed/33457124
http://dx.doi.org/10.7759/cureus.12020
_version_ 1783634860139610112
author Vermani, Litika
Kumar, Rajeev
Senthil Kumar, Nachimuthu
author_facet Vermani, Litika
Kumar, Rajeev
Senthil Kumar, Nachimuthu
author_sort Vermani, Litika
collection PubMed
description Background The overwhelming majority of published articles have taken colon and rectal cancer as a single group, i.e., colorectal cancer, when normalizing gene expression data with housekeeping genes (HKG) in quantitative polymerase chain reaction (qPCR) experiments though there are published reports that suggest the differential expression pattern of genes between the colon and rectal cancer groups and hence the current experiment was attempted to find out the optimal set of housekeeping genes from the list of common HKG for rectal tumor gene expression analysis. Methods The expression of five potential housekeeping genes GAPDH, RPNI, PUM1, B2M, and PMM1 was analyzed through qPCR and Bestkeeper software (http://www.wzw.tum.de/gene-quantification/bestkeeper.html) in 20 stage II-IV rectal cancer samples to check for uniformity in their expression pattern. Cancer stem cell (CSC) marker ALDH1 and epithelial-mesenchymal transition marker (EMT) markers E cadherin, vimentin, Twist, and SNAI2 expression were evaluated in conjunction with the two optimal reference genes in 10 rectal cancers as part of validation. Results The standard deviation of the cycle threshold value of GAPDH was found the lowest at 0.65 followed by RPN1 at 0.88, PUM1 at 0.94, PMM1 at 0.94, and B2M at 1.21 when analyzed with BestKeeper software. Using GAPDH and PUM1 as the reference gene for the validation phase, rectal cancer patients with stage III/IV showed a 4.79-fold change (P=0.006) in ALDH1 expression, and an 11.76-fold change in Twist expression (P=0.003) with respect to stage II rectal tumor when normalized with GAPDH and PUM1. Conclusion GAPDH and PUM1 can be used as an optimal set of housekeeping genes for gene expression-related experiments in rectal tumors. ALDH1 and Twist were found significantly overexpressed in stage III/IV rectal tumors in comparison to stage II rectal cancer. Genes associated with cancer stem cells and EMT markers could be optimally analyzed by normalizing them with GAPDH and PUM1 as housekeeping genes.
format Online
Article
Text
id pubmed-7797410
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cureus
record_format MEDLINE/PubMed
spelling pubmed-77974102021-01-14 GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors Vermani, Litika Kumar, Rajeev Senthil Kumar, Nachimuthu Cureus Oncology Background The overwhelming majority of published articles have taken colon and rectal cancer as a single group, i.e., colorectal cancer, when normalizing gene expression data with housekeeping genes (HKG) in quantitative polymerase chain reaction (qPCR) experiments though there are published reports that suggest the differential expression pattern of genes between the colon and rectal cancer groups and hence the current experiment was attempted to find out the optimal set of housekeeping genes from the list of common HKG for rectal tumor gene expression analysis. Methods The expression of five potential housekeeping genes GAPDH, RPNI, PUM1, B2M, and PMM1 was analyzed through qPCR and Bestkeeper software (http://www.wzw.tum.de/gene-quantification/bestkeeper.html) in 20 stage II-IV rectal cancer samples to check for uniformity in their expression pattern. Cancer stem cell (CSC) marker ALDH1 and epithelial-mesenchymal transition marker (EMT) markers E cadherin, vimentin, Twist, and SNAI2 expression were evaluated in conjunction with the two optimal reference genes in 10 rectal cancers as part of validation. Results The standard deviation of the cycle threshold value of GAPDH was found the lowest at 0.65 followed by RPN1 at 0.88, PUM1 at 0.94, PMM1 at 0.94, and B2M at 1.21 when analyzed with BestKeeper software. Using GAPDH and PUM1 as the reference gene for the validation phase, rectal cancer patients with stage III/IV showed a 4.79-fold change (P=0.006) in ALDH1 expression, and an 11.76-fold change in Twist expression (P=0.003) with respect to stage II rectal tumor when normalized with GAPDH and PUM1. Conclusion GAPDH and PUM1 can be used as an optimal set of housekeeping genes for gene expression-related experiments in rectal tumors. ALDH1 and Twist were found significantly overexpressed in stage III/IV rectal tumors in comparison to stage II rectal cancer. Genes associated with cancer stem cells and EMT markers could be optimally analyzed by normalizing them with GAPDH and PUM1 as housekeeping genes. Cureus 2020-12-10 /pmc/articles/PMC7797410/ /pubmed/33457124 http://dx.doi.org/10.7759/cureus.12020 Text en Copyright © 2020, Vermani et al. http://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Oncology
Vermani, Litika
Kumar, Rajeev
Senthil Kumar, Nachimuthu
GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors
title GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors
title_full GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors
title_fullStr GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors
title_full_unstemmed GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors
title_short GAPDH and PUM1: Optimal Housekeeping Genes for Quantitative Polymerase Chain Reaction-Based Analysis of Cancer Stem Cells and Epithelial-Mesenchymal Transition Gene Expression in Rectal Tumors
title_sort gapdh and pum1: optimal housekeeping genes for quantitative polymerase chain reaction-based analysis of cancer stem cells and epithelial-mesenchymal transition gene expression in rectal tumors
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797410/
https://www.ncbi.nlm.nih.gov/pubmed/33457124
http://dx.doi.org/10.7759/cureus.12020
work_keys_str_mv AT vermanilitika gapdhandpum1optimalhousekeepinggenesforquantitativepolymerasechainreactionbasedanalysisofcancerstemcellsandepithelialmesenchymaltransitiongeneexpressioninrectaltumors
AT kumarrajeev gapdhandpum1optimalhousekeepinggenesforquantitativepolymerasechainreactionbasedanalysisofcancerstemcellsandepithelialmesenchymaltransitiongeneexpressioninrectaltumors
AT senthilkumarnachimuthu gapdhandpum1optimalhousekeepinggenesforquantitativepolymerasechainreactionbasedanalysisofcancerstemcellsandepithelialmesenchymaltransitiongeneexpressioninrectaltumors