Cargando…

A dataset of labelled objects on raw video sequences

We present an object labelled dataset called SFU-HW-Objects-v1, which contains object labels for a set of raw video sequences. The dataset can be useful for the cases where both object detection accuracy and video coding efficiency need to be evaluated on the same dataset. Object ground-truths for 1...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Hyomin, Hosseini, Elahe, Ranjbar Alvar, Saeed, Cohen, Robert A., Bajić, Ivan V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797526/
https://www.ncbi.nlm.nih.gov/pubmed/33457477
http://dx.doi.org/10.1016/j.dib.2020.106701
Descripción
Sumario:We present an object labelled dataset called SFU-HW-Objects-v1, which contains object labels for a set of raw video sequences. The dataset can be useful for the cases where both object detection accuracy and video coding efficiency need to be evaluated on the same dataset. Object ground-truths for 18 of the High Efficiency Video Coding (HEVC) v1 Common Test Conditions (CTC) sequences have been labelled. The object categories used for the labeling are based on the Common Objects in Context (COCO) labels. A total of 21 object classes are found in test sequences, out of the 80 original COCO label classes. Brief descriptions of the labeling process and the structure of the dataset are presented.