Cargando…

Diagnostic management of inpatients with a positive D-dimer test: developing a new clinical decision-making rule for pulmonary embolism

BACKGROUND: A positive D-dimer test has high sensitivity but relatively poor specificity for the diagnosis of pulmonary embolism, causing difficulty for clinicians unskilled in pulmonary embolism diagnosis in determining whether a patient with a positive D-dimer test needs to undergo computed tomogr...

Descripción completa

Detalles Bibliográficos
Autores principales: Lei, Min, Liu, Chang, Luo, Zhuang, Xu, Zhibo, Jiang, Youfan, Lin, Jiachen, Wang, Chu, Jiang, Depeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797584/
https://www.ncbi.nlm.nih.gov/pubmed/33456753
http://dx.doi.org/10.1177/2045894020943378
Descripción
Sumario:BACKGROUND: A positive D-dimer test has high sensitivity but relatively poor specificity for the diagnosis of pulmonary embolism, causing difficulty for clinicians unskilled in pulmonary embolism diagnosis in determining whether a patient with a positive D-dimer test needs to undergo computed tomographic pulmonary angiography. OBJECTIVES: We sought to develop a new clinical decision-making rule based on a positive D-dimer result to predict the probability of pulmonary embolism and to guide clinicians in making decisions regarding the need for computed tomographic pulmonary angiography. METHODS: We conducted a prospective, multicenter study in three hospitals in China. A total of 3014 inpatients with positive D-dimer results were included. In the derivation group, we built a multivariate logistic regression model and deduced a regression equation from which our score was derived. Finally, we validated the score in an independent cohort. RESULTS: Our score included nine variables (points): chest pain (1.4), chest tightness (2.3), shortness of breath (3.6), hemoptysis (3.4), heart rate ≥100 beats/min (3.6), blood gas analysis (2.9), electrocardiogram presenting a typical S1Q3T3 pattern (4.1), electrocardiogram findings (2.4), and ultrasonic cardiogram findings (3.7). The sensitivities and specificities were 100% and 86.94%, respectively, in the derivation group and 100% and 90.82%, respectively, in the validation group. Additionally, the observed and predicted proportions of patients who underwent computed tomographic pulmonary angiography were 16.82% and 10.76%, respectively, in the derivation group and 18.72% and 11.40%, respectively, in the validation group. CONCLUSIONS: The new score can categorize inpatients with a positive D-dimer test as pulmonary embolism-likely or pulmonary embolism-unlikely, thus reducing unnecessary computed tomographic pulmonary angiography examinations.