Cargando…
Potential limitations in COVID-19 machine learning due to data source variability: A case study in the nCov2019 dataset
OBJECTIVE: The lack of representative coronavirus disease 2019 (COVID-19) data is a bottleneck for reliable and generalizable machine learning. Data sharing is insufficient without data quality, in which source variability plays an important role. We showcase and discuss potential biases from data s...
Autores principales: | Sáez, Carlos, Romero, Nekane, Conejero, J Alberto, García-Gómez, Juan M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797735/ https://www.ncbi.nlm.nih.gov/pubmed/33027509 http://dx.doi.org/10.1093/jamia/ocaa258 |
Ejemplares similares
-
An update on the 2019-nCoV outbreak
por: Ammad Ud Din, Mohammad, et al.
Publicado: (2020) -
The Allplex 2019-nCoV (Seegene) assay: which performances are for SARS-CoV-2 infection diagnosis?
por: Farfour, Eric, et al.
Publicado: (2020) -
Imaging changes in patients with 2019-nCov
por: Pan, Yueying, et al.
Publicado: (2020) -
Machine intelligence design of 2019-nCoV drugs
por: Gao, Kaifu, et al.
Publicado: (2020) -
Subphenotyping of Mexican Patients With COVID-19 at Preadmission To Anticipate Severity Stratification: Age-Sex Unbiased Meta-Clustering Technique
por: Zhou, Lexin, et al.
Publicado: (2022)