Cargando…

Human giant larvae-1 promotes migration and invasion of malignant glioma cells by regulating N-cadherin

Human giant larvae-1 (Hugl-1) is a human homologue of Drosophila tumor suppressor lethal (2)-giant larvae and has been reported to be involved in the development of human malignancies. Previous studies performed by our group demonstrated that Hugl-1 inhibits glioma cell proliferation in an intracran...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yan, Zhang, Yu, Sang, Ben, Zhu, Xianlong, Yu, Rutong, Zhou, Xiuping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7798033/
https://www.ncbi.nlm.nih.gov/pubmed/33552285
http://dx.doi.org/10.3892/ol.2021.12428
Descripción
Sumario:Human giant larvae-1 (Hugl-1) is a human homologue of Drosophila tumor suppressor lethal (2)-giant larvae and has been reported to be involved in the development of human malignancies. Previous studies performed by our group demonstrated that Hugl-1 inhibits glioma cell proliferation in an intracranial model of nude mice. However, the exact molecular mechanisms underlying the participation of Hugl-1 in glioma invasion and migration, and in the depolarizing process remain largely unknown. Utilizing the U251-MG cells with stable expression of Hugl-1, the present study used wound healing, Transwell invasion and western blot assays to explore the role and specific mechanism of Hugl-1 in glioma invasion and migration. The results of the present study demonstrated that overexpression of Hugl-1 decreased cell-cell adhesion and increased cell-cell extracellular matrix adhesion. In addition, overexpression of Hugl-1 promoted pseudopodia formation, glioma cell migration and invasion. The molecular mechanism of action involved the negative regulation of N-cadherin protein levels by Hugl-1. Overexpression or knockdown of N-cadherin partially suppressed or enhanced the effects of Hugl-1 on glioma cell migration and invasion, respectively. Furthermore, Hugl-1 inhibited cell proliferation, while promoting cell migration, which suggests that it may serve a two-sided biological role in cellular processes. Taken together, these results suggest that Hugl-1 promotes the migration and invasion of malignant glioma cells by decreasing N-cadherin expression. Thus, Hugl-1 may be applied in the development of targeted and personalized treatment.