Cargando…
Anomaly detection to predict relapse risk in schizophrenia
The integration of technology in clinical care is growing rapidly and has become especially relevant during the global COVID-19 pandemic. Smartphone-based digital phenotyping, or the use of integrated sensors to identify patterns in behavior and symptomatology, has shown potential in detecting subtl...
Autores principales: | Henson, Philip, D’Mello, Ryan, Vaidyam, Aditya, Keshavan, Matcheri, Torous, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7798381/ https://www.ncbi.nlm.nih.gov/pubmed/33431818 http://dx.doi.org/10.1038/s41398-020-01123-7 |
Ejemplares similares
-
T98. CHARACTERIZING THE CLINICAL COURSE IN SCHIZOPHRENIA WITH DIGITAL PHENOTYPING
por: Torous, John, et al.
Publicado: (2020) -
Towards clinically actionable digital phenotyping targets in schizophrenia
por: Henson, Philip, et al.
Publicado: (2020) -
Impact of dynamic greenspace exposure on symptomatology in individuals with schizophrenia
por: Henson, Philip, et al.
Publicado: (2020) -
Similarity matrix-based anomaly detection for clinical intervention
por: D’Mello, Ryan, et al.
Publicado: (2022) -
Assessing the potential of longitudinal smartphone based cognitive assessment in schizophrenia: A naturalistic pilot study
por: Liu, Gang, et al.
Publicado: (2019)