Cargando…

On collaborative reinforcement learning to optimize the redistribution of critical medical supplies throughout the COVID-19 pandemic

OBJECTIVE: This work investigates how reinforcement learning and deep learning models can facilitate the near-optimal redistribution of medical equipment in order to bolster public health responses to future crises similar to the COVID-19 pandemic. MATERIALS AND METHODS: The system presented is simu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bednarski, Bryan P, Singh, Akash Deep, Jones, William M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7799039/
https://www.ncbi.nlm.nih.gov/pubmed/33295626
http://dx.doi.org/10.1093/jamia/ocaa324
Descripción
Sumario:OBJECTIVE: This work investigates how reinforcement learning and deep learning models can facilitate the near-optimal redistribution of medical equipment in order to bolster public health responses to future crises similar to the COVID-19 pandemic. MATERIALS AND METHODS: The system presented is simulated with disease impact statistics from the Institute of Health Metrics, Centers for Disease Control and Prevention, and Census Bureau. We present a robust pipeline for data preprocessing, future demand inference, and a redistribution algorithm that can be adopted across broad scales and applications. RESULTS: The reinforcement learning redistribution algorithm demonstrates performance optimality ranging from 93% to 95%. Performance improves consistently with the number of random states participating in exchange, demonstrating average shortage reductions of 78.74 ± 30.8% in simulations with 5 states to 93.50 ± 0.003% with 50 states. CONCLUSIONS: These findings bolster confidence that reinforcement learning techniques can reliably guide resource allocation for future public health emergencies.