Cargando…
Mitochondrial heteroplasmy profiling in single human oocytes by next-generation sequencing
Mitochondrial DNA (mtDNA) plays a key role in the development of a competent oocyte. Mutations of the mitochondrial genome lead to an altered energetic metabolism with negative effects on oocyte developmental competence. In this study, mtDNA heteroplasmy at an intra-oocyte level and between the diff...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7800564/ https://www.ncbi.nlm.nih.gov/pubmed/33473893 http://dx.doi.org/10.1080/23802359.2017.1365634 |
Sumario: | Mitochondrial DNA (mtDNA) plays a key role in the development of a competent oocyte. Mutations of the mitochondrial genome lead to an altered energetic metabolism with negative effects on oocyte developmental competence. In this study, mtDNA heteroplasmy at an intra-oocyte level and between the different analyzed human oocytes (n = 12) was identified by a next-generation sequencing (NGS) protocol previously developed by this research group and submitted to GenBank. This method highlighted, in particular, variants in the genes involved in the respiratory chain providing a direct indication of the cell-specific damage within the mitochondrial genome as predictor of the oocyte quality. |
---|