Cargando…

Sequencing and analysis of the complete mitochondrial genome of the taiga shrew (Sorex isodon) from China

The complete mitogenome sequence of the taiga shrew (Sorex isodon) was determined using long PCR. The genome was 17,008 bp in length and contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, one origin of L strand replication and one control region. The overall base comp...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Liu, Wei, Bai, Ao-Nan, Wang, Xin-Min, Tian, Dian-Wei, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7800816/
https://www.ncbi.nlm.nih.gov/pubmed/33474206
http://dx.doi.org/10.1080/23802359.2018.1462113
Descripción
Sumario:The complete mitogenome sequence of the taiga shrew (Sorex isodon) was determined using long PCR. The genome was 17,008 bp in length and contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes, one origin of L strand replication and one control region. The overall base composition of the heavy strand is A (32.5%), C (24.5%), T (28.5%), and G (13.5%). The base compositions present clearly the A–T skew, which is most obviously in the control region and protein-coding genes. The extended termination-associated sequence domain, the central conserved domain and the conserved sequence block domain are defined in the mitochondrial genome control region of the taiga shrew. Mitochondrial genome analyses based on MP, ML, NJ, and Bayesian analyses yielded identical phylogenetic trees. The eight Sorex species formed a monophyletic group with the high bootstrap value (100%) in all examinations.