Cargando…
FFU-Net: Feature Fusion U-Net for Lesion Segmentation of Diabetic Retinopathy
Diabetic retinopathy is one of the main causes of blindness in human eyes, and lesion segmentation is an important basic work for the diagnosis of diabetic retinopathy. Due to the small lesion areas scattered in fundus images, it is laborious to segment the lesion of diabetic retinopathy effectively...
Autores principales: | Xu, Yifei, Zhou, Zhuming, Li, Xiao, Zhang, Nuo, Zhang, Meizi, Wei, Pingping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801055/ https://www.ncbi.nlm.nih.gov/pubmed/33490274 http://dx.doi.org/10.1155/2021/6644071 |
Ejemplares similares
-
MSLF-Net: A Multi-Scale and Multi-Level Feature Fusion Net for Diabetic Retinopathy Segmentation
por: Yan, Haitao, et al.
Publicado: (2022) -
Segmentation of Laser Marks of Diabetic Retinopathy in the Fundus Photographs Using Lightweight U-Net
por: Jiang, Yukang, et al.
Publicado: (2021) -
Modified U-NET Architecture for Segmentation of Skin Lesion
por: Anand, Vatsala, et al.
Publicado: (2022) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022) -
DBFU-Net: Double branch fusion U-Net with hard example weighting train strategy to segment retinal vessel
por: Huang, Jianping, et al.
Publicado: (2022)