Cargando…

Genome Assembly and Pathway Analysis of Edible Mushroom Agrocybe cylindracea

Agrocybe cylindracea, an edible mushroom, is widely cultivated for its abundance of nutrients and flavor, and many of its metabolites are reported to have beneficial roles, such as medicinal effects on tumors and chronical illnesses. However, the lack of genomic information has hindered further mole...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Yuan, Lu, Dengxue, Wang, Sen, Zhao, Yuhui, Gao, Shenghan, Han, Rongbing, Yu, Jun, Zheng, Weili, Geng, Jianing, Hu, Songnian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801210/
https://www.ncbi.nlm.nih.gov/pubmed/32561469
http://dx.doi.org/10.1016/j.gpb.2018.10.009
Descripción
Sumario:Agrocybe cylindracea, an edible mushroom, is widely cultivated for its abundance of nutrients and flavor, and many of its metabolites are reported to have beneficial roles, such as medicinal effects on tumors and chronical illnesses. However, the lack of genomic information has hindered further molecular studies on this fungus. Here, we present a genome assembly of A. cylindracea together with comparative genomics and pathway analyses of Agaricales species. The draft, generated from both next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing platforms to overcome high genetic heterozygosity, is composed of a 56.5 Mb sequence and 15,384 predicted genes. This mushroom possesses a complex reproductive system, including tetrapolar heterothallic and secondary homothallic mechanisms, and harbors several hydrolases and peptidases for gradual and effective degradation of various carbon sources. Our pathway analysis reveals complex processes involved in the biosynthesis of polysaccharides and other active substances, including B vitamins, unsaturated fatty acids, and N-acetylglucosamine. RNA-seq data show that A. cylindracea stipes tend to synthesize carbohydrate for carbon sequestration and energy storage, whereas pilei are more active in carbon utilization and unsaturated fatty acid biosynthesis. These results reflect diverse functions of the two anatomical structures of the fruiting body. Our comprehensive genomic and transcriptomic data, as well as preliminary comparative analyses, provide insights into the molecular details of the medicinal effects in terms of active compounds and nutrient components.