Cargando…

An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures

In this work we investigate the heat kernel of the Laplace–Beltrami operator on a rectangular torus and the according temperature distribution. We compute the minimum and the maximum of the temperature on rectangular tori of fixed area by means of Gauss’ hypergeometric function [Formula: see text] a...

Descripción completa

Detalles Bibliográficos
Autor principal: Faulhuber, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801325/
https://www.ncbi.nlm.nih.gov/pubmed/33488270
http://dx.doi.org/10.1007/s11139-019-00224-2
_version_ 1783635552431505408
author Faulhuber, Markus
author_facet Faulhuber, Markus
author_sort Faulhuber, Markus
collection PubMed
description In this work we investigate the heat kernel of the Laplace–Beltrami operator on a rectangular torus and the according temperature distribution. We compute the minimum and the maximum of the temperature on rectangular tori of fixed area by means of Gauss’ hypergeometric function [Formula: see text] and the elliptic modulus. In order to be able to do this, we employ a beautiful result of Ramanujan, connecting hypergeometric functions, the elliptic modulus and theta functions. Also, we investigate the temperature distribution of the heat kernel on hexagonal tori and use Ramanujan’s corresponding theory of signature 3 to derive analogous results to the rectangular case. Lastly, we show connections to the problem of finding the exact value of Landau’s “Weltkonstante”, a universal constant arising in the theory of extremal holomorphic mappings; and for a related, restricted extremal problem we show that the conjectured solution is the second lemniscate constant.
format Online
Article
Text
id pubmed-7801325
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-78013252021-01-21 An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures Faulhuber, Markus Ramanujan J Article In this work we investigate the heat kernel of the Laplace–Beltrami operator on a rectangular torus and the according temperature distribution. We compute the minimum and the maximum of the temperature on rectangular tori of fixed area by means of Gauss’ hypergeometric function [Formula: see text] and the elliptic modulus. In order to be able to do this, we employ a beautiful result of Ramanujan, connecting hypergeometric functions, the elliptic modulus and theta functions. Also, we investigate the temperature distribution of the heat kernel on hexagonal tori and use Ramanujan’s corresponding theory of signature 3 to derive analogous results to the rectangular case. Lastly, we show connections to the problem of finding the exact value of Landau’s “Weltkonstante”, a universal constant arising in the theory of extremal holomorphic mappings; and for a related, restricted extremal problem we show that the conjectured solution is the second lemniscate constant. Springer US 2020-03-27 2021 /pmc/articles/PMC7801325/ /pubmed/33488270 http://dx.doi.org/10.1007/s11139-019-00224-2 Text en © The Author(s) 2020 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Article
Faulhuber, Markus
An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures
title An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures
title_full An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures
title_fullStr An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures
title_full_unstemmed An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures
title_short An application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “Weltkonstante”-or-how Ramanujan split temperatures
title_sort application of hypergeometric functions to heat kernels on rectangular and hexagonal tori and a “weltkonstante”-or-how ramanujan split temperatures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801325/
https://www.ncbi.nlm.nih.gov/pubmed/33488270
http://dx.doi.org/10.1007/s11139-019-00224-2
work_keys_str_mv AT faulhubermarkus anapplicationofhypergeometricfunctionstoheatkernelsonrectangularandhexagonaltoriandaweltkonstanteorhowramanujansplittemperatures
AT faulhubermarkus applicationofhypergeometricfunctionstoheatkernelsonrectangularandhexagonaltoriandaweltkonstanteorhowramanujansplittemperatures