Cargando…

Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes

AIMS/HYPOTHESIS: Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by...

Descripción completa

Detalles Bibliográficos
Autores principales: Ziegler, Dan, Strom, Alexander, Straßburger, Klaus, Knebel, Birgit, Bönhof, Gidon J., Kotzka, Jörg, Szendroedi, Julia, Roden, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801358/
https://www.ncbi.nlm.nih.gov/pubmed/33084971
http://dx.doi.org/10.1007/s00125-020-05310-5
_version_ 1783635555967303680
author Ziegler, Dan
Strom, Alexander
Straßburger, Klaus
Knebel, Birgit
Bönhof, Gidon J.
Kotzka, Jörg
Szendroedi, Julia
Roden, Michael
author_facet Ziegler, Dan
Strom, Alexander
Straßburger, Klaus
Knebel, Birgit
Bönhof, Gidon J.
Kotzka, Jörg
Szendroedi, Julia
Roden, Michael
author_sort Ziegler, Dan
collection PubMed
description AIMS/HYPOTHESIS: Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes. We hypothesised that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes. METHODS: We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal (NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences [RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from NN intervals recorded during a 3 h hyperinsulinaemic–euglycaemic clamp at baseline and in subsets of participants with type 1 (n = 60) and type 2 diabetes (n = 95) after 5 years. RESULTS: In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNN was inversely associated with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa C32:0 and SM C16:1 (r = −0.242 to r = −0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years, HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered. CONCLUSIONS/INTERPRETATION: Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunction in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early development of CAN in type 2 diabetes. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-020-05310-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
format Online
Article
Text
id pubmed-7801358
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-78013582021-01-21 Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes Ziegler, Dan Strom, Alexander Straßburger, Klaus Knebel, Birgit Bönhof, Gidon J. Kotzka, Jörg Szendroedi, Julia Roden, Michael Diabetologia Article AIMS/HYPOTHESIS: Emerging evidence suggests that in addition to hyperglycaemia, dyslipidaemia could represent a contributing pathogenetic factor to diabetic neuropathy, while obesity and insulin resistance play a role in the development of diabetic cardiac autonomic neuropathy (CAN) characterised by reduced heart rate variability (HRV), particularly in type 2 diabetes. We hypothesised that distinct lipid metabolites are associated with diminished HRV in recent-onset type 2 diabetes rather than type 1 diabetes. METHODS: We analysed 127 plasma lipid metabolites (11 acylcarnitines, 39 NEFA, 12 sphingomyelins (SMs), 56 phosphatidylcholines and nine lysophosphatidylcholines) using MS in participants from the German Diabetes Study baseline cohort recently diagnosed with type 1 (n = 100) and type 2 diabetes (n = 206). Four time-domain HRV indices (number of normal-to-normal (NN) intervals >50 ms divided by the number of all NN intervals [pNN50]; root mean square of successive differences [RMSSD]; SD of NN intervals [SDNN]; and SD of differences between adjacent NN intervals) and three frequency-domain HRV indices (very-low-frequency [VLF], low-frequency [LF] and high-frequency [HF] power spectrum) were computed from NN intervals recorded during a 3 h hyperinsulinaemic–euglycaemic clamp at baseline and in subsets of participants with type 1 (n = 60) and type 2 diabetes (n = 95) after 5 years. RESULTS: In participants with type 2 diabetes, after Bonferroni correction and rigorous adjustment, SDNN was inversely associated with higher levels of diacyl-phosphatidylcholine (PCaa) C32:0, PCaa C34:1, acyl-alkyl-phosphatidylcholine (PCae) C36:0, SM C16:0 and SM C16:1. SD of differences between NN intervals was inversely associated with PCaa C32:0, PCaa C34:1, PCaa C34:2, PCae C36:0 and SM C16:1, and RMSSD with PCae C36:0. For VLF power, inverse associations were found with PCaa C30:0, PCaa C32:0, PCaa C32:1, PCaa C34:2 and SM C16:1, and for LF power inverse associations were found with PCaa C32:0 and SM C16:1 (r = −0.242 to r = −0.349; p ≤ 0.0005 for all correlations). In contrast, no associations of lipid metabolites with measures of cardiac autonomic function were noted in participants recently diagnosed with type 1 diabetes. After 5 years, HRV declined due to ageing rather than diabetes, whereby prediction analyses for lipid metabolites were hampered. CONCLUSIONS/INTERPRETATION: Higher plasma levels of specific lipid metabolites are closely linked to cardiac autonomic dysfunction in recent-onset type 2 diabetes but not type 1 diabetes, suggesting a role for perturbed lipid metabolism in the early development of CAN in type 2 diabetes. [Figure: see text] ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00125-020-05310-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users. Springer Berlin Heidelberg 2020-10-21 2021 /pmc/articles/PMC7801358/ /pubmed/33084971 http://dx.doi.org/10.1007/s00125-020-05310-5 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Ziegler, Dan
Strom, Alexander
Straßburger, Klaus
Knebel, Birgit
Bönhof, Gidon J.
Kotzka, Jörg
Szendroedi, Julia
Roden, Michael
Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes
title Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes
title_full Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes
title_fullStr Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes
title_full_unstemmed Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes
title_short Association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes
title_sort association of cardiac autonomic dysfunction with higher levels of plasma lipid metabolites in recent-onset type 2 diabetes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801358/
https://www.ncbi.nlm.nih.gov/pubmed/33084971
http://dx.doi.org/10.1007/s00125-020-05310-5
work_keys_str_mv AT zieglerdan associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT stromalexander associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT straßburgerklaus associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT knebelbirgit associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT bonhofgidonj associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT kotzkajorg associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT szendroedijulia associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT rodenmichael associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes
AT associationofcardiacautonomicdysfunctionwithhigherlevelsofplasmalipidmetabolitesinrecentonsettype2diabetes