Cargando…
GVES: machine learning model for identification of prognostic genes with a small dataset
Machine learning may be a powerful approach to more accurate identification of genes that may serve as prognosticators of cancer outcomes using various types of omics data. However, to date, machine learning approaches have shown limited prediction accuracy for cancer outcomes, primarily owing to sm...
Autores principales: | Ko, Soohyun, Choi, Jonghwan, Ahn, Jaegyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801384/ https://www.ncbi.nlm.nih.gov/pubmed/33431999 http://dx.doi.org/10.1038/s41598-020-79889-5 |
Ejemplares similares
-
G2Vec: Distributed gene representations for identification of cancer prognostic genes
por: Choi, Jonghwan, et al.
Publicado: (2018) -
Prediction of GPCR-Ligand Binding Using Machine Learning Algorithms
por: Seo, Sangmin, et al.
Publicado: (2018) -
RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance
por: Choi, Jonghwan, et al.
Publicado: (2020) -
Predicting chemical structure using reinforcement learning with a stack-augmented conditional variational autoencoder
por: Kim, Hwanhee, et al.
Publicado: (2022) -
Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions
por: Seo, Sangmin, et al.
Publicado: (2021)