Cargando…

In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h-

BACKGROUND: The crucial factor in the production of bio-fuels is the choice of potent microorganisms used in fermentation processes. Despite the evolving trend of using bacteria, yeast is still the primary choice for fermentation. Molecular characterization of many genes from baker’s yeast (Saccharo...

Descripción completa

Detalles Bibliográficos
Autores principales: Aman Beshir, Jemal, Kebede, Mulugeta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801573/
https://www.ncbi.nlm.nih.gov/pubmed/33428031
http://dx.doi.org/10.1186/s43141-020-00097-9
_version_ 1783635603599917056
author Aman Beshir, Jemal
Kebede, Mulugeta
author_facet Aman Beshir, Jemal
Kebede, Mulugeta
author_sort Aman Beshir, Jemal
collection PubMed
description BACKGROUND: The crucial factor in the production of bio-fuels is the choice of potent microorganisms used in fermentation processes. Despite the evolving trend of using bacteria, yeast is still the primary choice for fermentation. Molecular characterization of many genes from baker’s yeast (Saccharomyces cerevisiaea), and fission yeast (Schizosaccharomyces pombe), have improved our understanding in gene structure and the regulation of its expression. This in silico study was done with the aim of analyzing the promoter regions, transcription start site (TSS), and CpG islands of genes encoding for alcohol production in S. cerevisiaea S288C and S. pombe 972h-. RESULTS: The analysis revealed the highest promoter prediction scores (1.0) were obtained in five sequences (AAD4, SFA1, GRE3, YKL071W, and YPR127W) for S. cerevisiaea S288C TSS while the lowest (0.8) were found in three sequences (AAD6, ADH5, and BDH2). Similarly, in S. pombe 972h-, the highest (0.99) and lowest (0.88) prediction scores were obtained in five (Adh1, SPBC8E4.04, SPBC215.11c, SPAP32A8.02, and SPAC19G12.09) and one (erg27) sequences, respectively. Determination of common motifs revealed that S. cerevisiaea S288C had 100% coverage at MSc1 with an E value of 3.7e−007 while S. pombe 972h- had 95.23% at MSp1 with an E value of 2.6e+002. Furthermore, comparison of identified transcription factor proteins indicated that 88.88% of MSp1 were exactly similar to MSc1. It also revealed that only 21.73% in S. cerevisiaea S288C and 28% in S. pombe 972h- of the gene body regions had CpG islands. A combined phylogenetic analysis indicated that all sequences from both S. cerevisiaea S288C and S. pombe 972h- were divided into four subgroups (I, II, III, and IV). The four clades are respectively colored in blue, red, green, and violet. CONCLUSION: This in silico analysis of gene promoter regions and transcription factors through the actions of regulatory structure such as motifs and CpG islands of genes encoding alcohol production could be used to predict gene expression profiles in yeast species.
format Online
Article
Text
id pubmed-7801573
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-78015732021-01-14 In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h- Aman Beshir, Jemal Kebede, Mulugeta J Genet Eng Biotechnol Research BACKGROUND: The crucial factor in the production of bio-fuels is the choice of potent microorganisms used in fermentation processes. Despite the evolving trend of using bacteria, yeast is still the primary choice for fermentation. Molecular characterization of many genes from baker’s yeast (Saccharomyces cerevisiaea), and fission yeast (Schizosaccharomyces pombe), have improved our understanding in gene structure and the regulation of its expression. This in silico study was done with the aim of analyzing the promoter regions, transcription start site (TSS), and CpG islands of genes encoding for alcohol production in S. cerevisiaea S288C and S. pombe 972h-. RESULTS: The analysis revealed the highest promoter prediction scores (1.0) were obtained in five sequences (AAD4, SFA1, GRE3, YKL071W, and YPR127W) for S. cerevisiaea S288C TSS while the lowest (0.8) were found in three sequences (AAD6, ADH5, and BDH2). Similarly, in S. pombe 972h-, the highest (0.99) and lowest (0.88) prediction scores were obtained in five (Adh1, SPBC8E4.04, SPBC215.11c, SPAP32A8.02, and SPAC19G12.09) and one (erg27) sequences, respectively. Determination of common motifs revealed that S. cerevisiaea S288C had 100% coverage at MSc1 with an E value of 3.7e−007 while S. pombe 972h- had 95.23% at MSp1 with an E value of 2.6e+002. Furthermore, comparison of identified transcription factor proteins indicated that 88.88% of MSp1 were exactly similar to MSc1. It also revealed that only 21.73% in S. cerevisiaea S288C and 28% in S. pombe 972h- of the gene body regions had CpG islands. A combined phylogenetic analysis indicated that all sequences from both S. cerevisiaea S288C and S. pombe 972h- were divided into four subgroups (I, II, III, and IV). The four clades are respectively colored in blue, red, green, and violet. CONCLUSION: This in silico analysis of gene promoter regions and transcription factors through the actions of regulatory structure such as motifs and CpG islands of genes encoding alcohol production could be used to predict gene expression profiles in yeast species. Springer Berlin Heidelberg 2021-01-11 /pmc/articles/PMC7801573/ /pubmed/33428031 http://dx.doi.org/10.1186/s43141-020-00097-9 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Research
Aman Beshir, Jemal
Kebede, Mulugeta
In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h-
title In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h-
title_full In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h-
title_fullStr In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h-
title_full_unstemmed In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h-
title_short In silico analysis of promoter regions and regulatory elements (motifs and CpG islands) of the genes encoding for alcohol production in Saccharomyces cerevisiaea S288C and Schizosaccharomyces pombe 972h-
title_sort in silico analysis of promoter regions and regulatory elements (motifs and cpg islands) of the genes encoding for alcohol production in saccharomyces cerevisiaea s288c and schizosaccharomyces pombe 972h-
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801573/
https://www.ncbi.nlm.nih.gov/pubmed/33428031
http://dx.doi.org/10.1186/s43141-020-00097-9
work_keys_str_mv AT amanbeshirjemal insilicoanalysisofpromoterregionsandregulatoryelementsmotifsandcpgislandsofthegenesencodingforalcoholproductioninsaccharomycescerevisiaeas288candschizosaccharomycespombe972h
AT kebedemulugeta insilicoanalysisofpromoterregionsandregulatoryelementsmotifsandcpgislandsofthegenesencodingforalcoholproductioninsaccharomycescerevisiaeas288candschizosaccharomycespombe972h