Cargando…
Optimizing respiratory virus surveillance networks using uncertainty propagation
Infectious disease prevention, control and forecasting rely on sentinel observations; however, many locations lack the capacity for routine surveillance. Here we show that, by using data from multiple sites collectively, accurate estimation and forecasting of respiratory diseases for locations witho...
Autores principales: | Pei, Sen, Teng, Xian, Lewis, Paul, Shaman, Jeffrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801666/ https://www.ncbi.nlm.nih.gov/pubmed/33431854 http://dx.doi.org/10.1038/s41467-020-20399-3 |
Ejemplares similares
-
Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness
por: Pei, Sen, et al.
Publicado: (2020) -
Integrating Structure Propagation Uncertainties in the Optimization of Online Adaptive Proton Therapy Plans
por: Nenoff, Lena, et al.
Publicado: (2022) -
Influenza forecast optimization when using different surveillance data types and geographic scale
por: Morita, Haruka, et al.
Publicado: (2018) -
Stochastic Systems: Uncertainty Quantification and Propagation
por: Grigoriu, Mircea
Publicado: (2012) -
Simulation of four respiratory viruses and inference of epidemiological parameters
por: Reis, Julia, et al.
Publicado: (2018)