Cargando…
Model selection for inferential models with high dimensional data: synthesis and graphical representation of multiple techniques
Inferential research commonly involves identification of causal factors from within high dimensional data but selection of the ‘correct’ variables can be problematic. One specific problem is that results vary depending on statistical method employed and it has been argued that triangulation of multi...
Autores principales: | Lima, Eliana, Hyde, Robert, Green, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801732/ https://www.ncbi.nlm.nih.gov/pubmed/33431921 http://dx.doi.org/10.1038/s41598-020-79317-8 |
Ejemplares similares
-
Variable selection for inferential models with relatively high-dimensional data: Between method heterogeneity and covariate stability as adjuncts to robust selection
por: Lima, Eliana, et al.
Publicado: (2020) -
Inferential Models
por: Martin, Ryan, et al.
Publicado: (2015) -
Probabilistic Graphical Model Representation in Phylogenetics
por: Höhna, Sebastian, et al.
Publicado: (2014) -
Graphical representation of multivariate data
Publicado: (1978) -
Inferential modeling of 3D chromatin structure
por: Wang, Siyu, et al.
Publicado: (2015)