Cargando…
A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience
A new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocati...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801878/ https://www.ncbi.nlm.nih.gov/pubmed/33458566 http://dx.doi.org/10.1007/s42452-020-04044-8 |
_version_ | 1783635664873455616 |
---|---|
author | Janamala, Varaprasad |
author_facet | Janamala, Varaprasad |
author_sort | Janamala, Varaprasad |
collection | PubMed |
description | A new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications. |
format | Online Article Text |
id | pubmed-7801878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-78018782021-01-12 A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience Janamala, Varaprasad SN Appl Sci Research Article A new meta-heuristic Pathfinder Algorithm (PFA) is adopted in this paper for optimal allocation and simultaneous integration of a solar photovoltaic system among multi-laterals, called interline-photovoltaic (I-PV) system. At first, the performance of PFA is evaluated by solving the optimal allocation of distribution generation problem in IEEE 33- and 69-bus systems for loss minimization. The obtained results show that the performance of proposed PFA is superior to PSO, TLBO, CSA, and GOA and other approaches cited in literature. The comparison of different performance measures of 50 independent trail runs predominantly shows the effectiveness of PFA and its efficiency for global optima. Subsequently, PFA is implemented for determining the optimal I-PV configuration considering the resilience without compromising the various operational and radiality constraints. Different case studies are simulated and the impact of the I-PV system is analyzed in terms of voltage profile and voltage stability. The proposed optimal I-PV configuration resulted in loss reduction of 77.87% and 98.33% in IEEE 33- and 69-bus systems, respectively. Further, the reduced average voltage deviation index and increased voltage stability index result in an improved voltage profile and enhanced voltage stability margin in radial distribution systems and its suitability for practical applications. Springer International Publishing 2021-01-12 2021 /pmc/articles/PMC7801878/ /pubmed/33458566 http://dx.doi.org/10.1007/s42452-020-04044-8 Text en © The Author(s) 2021 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Article Janamala, Varaprasad A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience |
title | A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience |
title_full | A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience |
title_fullStr | A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience |
title_full_unstemmed | A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience |
title_short | A new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience |
title_sort | new meta-heuristic pathfinder algorithm for solving optimal allocation of solar photovoltaic system in multi-lateral distribution system for improving resilience |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801878/ https://www.ncbi.nlm.nih.gov/pubmed/33458566 http://dx.doi.org/10.1007/s42452-020-04044-8 |
work_keys_str_mv | AT janamalavaraprasad anewmetaheuristicpathfinderalgorithmforsolvingoptimalallocationofsolarphotovoltaicsysteminmultilateraldistributionsystemforimprovingresilience AT janamalavaraprasad newmetaheuristicpathfinderalgorithmforsolvingoptimalallocationofsolarphotovoltaicsysteminmultilateraldistributionsystemforimprovingresilience |