Cargando…

Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells

BACKGROUND/OBJECTIVE: Circulating tumor cells (CTCs) are known as the root of cancer metastasis. Capture and inhibition of CTCs may prevent metastasis. Due to the rarity of CTCs in vivo, the current technology about CTCs capture is still challenging. The aim of our study was to conjugate the enhance...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yu, Zhang, Ting, Huang, Jing, Dong, Haiyan, Xie, Jingjing, Jia, Lee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801922/
https://www.ncbi.nlm.nih.gov/pubmed/33447051
http://dx.doi.org/10.2147/OTT.S287720
_version_ 1783635675297349632
author Li, Yu
Zhang, Ting
Huang, Jing
Dong, Haiyan
Xie, Jingjing
Jia, Lee
author_facet Li, Yu
Zhang, Ting
Huang, Jing
Dong, Haiyan
Xie, Jingjing
Jia, Lee
author_sort Li, Yu
collection PubMed
description BACKGROUND/OBJECTIVE: Circulating tumor cells (CTCs) are known as the root of cancer metastasis. Capture and inhibition of CTCs may prevent metastasis. Due to the rarity of CTCs in vivo, the current technology about CTCs capture is still challenging. The aim of our study was to conjugate the enhanced biostable double-strand (ds) circular aptamer (dApR) with dendrimers for capturing and restraining CTCs in vitro and in vivo. METHODS: CEM-targeting aptamer (Ap) was looped by ligation after phosphorylation to form circular ds aptamer dApR, which was then conjugated to dendrimers by biotin-streptavidin affinity reaction and named as G-dApR. The physicochemical properties of G-dApR were characterized by using PAGE gel electrophoresis, UV, DLS, AFM, fluorophotometer and laser confocal microscope. Biostability of G-dApR was also analyzed by gel electrophoresis. Confocal microscopy and flow cytometry were then performed to determine the binding specificity of G-dApR to CEM cells and the captured CTCs in mice and in human blood. Apoptosis of the captured cells was finally evaluated by using MTT assay, DAPI staining, AO/EB staining, cell cycle analysis and Annexin V-FITC/PI staining. RESULTS: Physicochemical characterization demonstrated the entity of dApR and G-dApR, and the nano-size of G-dApR (about 180 nm in aqueous phase). G-dApR exhibited the excellent biostability that confers their resistance to nuclease-mediated biodegradation in serum for at least 6 days. In our established CTCs model, we found that G-dApR could specifically and sensitively capture CTCs not non-target cells even in the presence of millions of interfering cells (10(8)), in mice and in human blood. Finally, the activity of captured CTCs was significantly down-regulated by G-dApR, resulting in apoptosis. CONCLUSION: We created the enhanced biostable dApR-coated dendrimers (G-dApR) that could specifically capture and restrain CTCs in vitro and in vivo for preventing CTC-mediated cancer metastasis.
format Online
Article
Text
id pubmed-7801922
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-78019222021-01-13 Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells Li, Yu Zhang, Ting Huang, Jing Dong, Haiyan Xie, Jingjing Jia, Lee Onco Targets Ther Original Research BACKGROUND/OBJECTIVE: Circulating tumor cells (CTCs) are known as the root of cancer metastasis. Capture and inhibition of CTCs may prevent metastasis. Due to the rarity of CTCs in vivo, the current technology about CTCs capture is still challenging. The aim of our study was to conjugate the enhanced biostable double-strand (ds) circular aptamer (dApR) with dendrimers for capturing and restraining CTCs in vitro and in vivo. METHODS: CEM-targeting aptamer (Ap) was looped by ligation after phosphorylation to form circular ds aptamer dApR, which was then conjugated to dendrimers by biotin-streptavidin affinity reaction and named as G-dApR. The physicochemical properties of G-dApR were characterized by using PAGE gel electrophoresis, UV, DLS, AFM, fluorophotometer and laser confocal microscope. Biostability of G-dApR was also analyzed by gel electrophoresis. Confocal microscopy and flow cytometry were then performed to determine the binding specificity of G-dApR to CEM cells and the captured CTCs in mice and in human blood. Apoptosis of the captured cells was finally evaluated by using MTT assay, DAPI staining, AO/EB staining, cell cycle analysis and Annexin V-FITC/PI staining. RESULTS: Physicochemical characterization demonstrated the entity of dApR and G-dApR, and the nano-size of G-dApR (about 180 nm in aqueous phase). G-dApR exhibited the excellent biostability that confers their resistance to nuclease-mediated biodegradation in serum for at least 6 days. In our established CTCs model, we found that G-dApR could specifically and sensitively capture CTCs not non-target cells even in the presence of millions of interfering cells (10(8)), in mice and in human blood. Finally, the activity of captured CTCs was significantly down-regulated by G-dApR, resulting in apoptosis. CONCLUSION: We created the enhanced biostable dApR-coated dendrimers (G-dApR) that could specifically capture and restrain CTCs in vitro and in vivo for preventing CTC-mediated cancer metastasis. Dove 2021-01-05 /pmc/articles/PMC7801922/ /pubmed/33447051 http://dx.doi.org/10.2147/OTT.S287720 Text en © 2020 Li et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Li, Yu
Zhang, Ting
Huang, Jing
Dong, Haiyan
Xie, Jingjing
Jia, Lee
Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells
title Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells
title_full Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells
title_fullStr Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells
title_full_unstemmed Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells
title_short Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells
title_sort biostable double-strand circular aptamers conjugated onto dendrimers for specific capture and inhibition of circulating leukemia cells
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801922/
https://www.ncbi.nlm.nih.gov/pubmed/33447051
http://dx.doi.org/10.2147/OTT.S287720
work_keys_str_mv AT liyu biostabledoublestrandcircularaptamersconjugatedontodendrimersforspecificcaptureandinhibitionofcirculatingleukemiacells
AT zhangting biostabledoublestrandcircularaptamersconjugatedontodendrimersforspecificcaptureandinhibitionofcirculatingleukemiacells
AT huangjing biostabledoublestrandcircularaptamersconjugatedontodendrimersforspecificcaptureandinhibitionofcirculatingleukemiacells
AT donghaiyan biostabledoublestrandcircularaptamersconjugatedontodendrimersforspecificcaptureandinhibitionofcirculatingleukemiacells
AT xiejingjing biostabledoublestrandcircularaptamersconjugatedontodendrimersforspecificcaptureandinhibitionofcirculatingleukemiacells
AT jialee biostabledoublestrandcircularaptamersconjugatedontodendrimersforspecificcaptureandinhibitionofcirculatingleukemiacells