Cargando…
Prediction of Obstructive Lung Disease from Chest Radiographs via Deep Learning Trained on Pulmonary Function Data
BACKGROUND: Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is often underdiagnosed. PURPOSE: To develop machine learning methods to predict COPD using chest radiographs and a convolutional neural network (CNN) trained with near-concurrent pulmonary function...
Autores principales: | Schroeder, Joyce D, Bigolin Lanfredi, Ricardo, Li, Tao, Chan, Jessica, Vachet, Clement, Paine III, Robert, Srikumar, Vivek, Tasdizen, Tolga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801924/ https://www.ncbi.nlm.nih.gov/pubmed/33447023 http://dx.doi.org/10.2147/COPD.S279850 |
Ejemplares similares
-
Localization supervision of chest x-ray classifiers using label-specific eye-tracking annotation
por: Bigolin Lanfredi, Ricardo, et al.
Publicado: (2023) -
REFLACX, a dataset of reports and eye-tracking data for localization of abnormalities in chest x-rays
por: Bigolin Lanfredi, Ricardo, et al.
Publicado: (2022) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Explainable emphysema detection on chest radiographs with deep learning
por: Çallı, Erdi, et al.
Publicado: (2022) -
Imaging the Chest: The Chest Radiograph
por: Broder, Joshua
Publicado: (2011)