Cargando…
Substructure-based neural machine translation for retrosynthetic prediction
With the rapid improvement of machine translation approaches, neural machine translation has started to play an important role in retrosynthesis planning, which finds reasonable synthetic pathways for a target molecule. Previous studies showed that utilizing the sequence-to-sequence frameworks of ne...
Autores principales: | Ucak, Umit V., Kang, Taek, Ko, Junsu, Lee, Juyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802345/ https://www.ncbi.nlm.nih.gov/pubmed/33431017 http://dx.doi.org/10.1186/s13321-020-00482-z |
Ejemplares similares
-
Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments
por: Ucak, Umit V., et al.
Publicado: (2022) -
Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence
Models
por: Liu, Bowen, et al.
Publicado: (2017) -
Retrosynthetic accessibility score (RAscore) – rapid machine learned synthesizability classification from AI driven retrosynthetic planning
por: Thakkar, Amol, et al.
Publicado: (2021) -
Reconstruction of lossless molecular representations from fingerprints
por: Ucak, Umit V., et al.
Publicado: (2023) -
Improving the quality of chemical language model outcomes with atom-in-SMILES tokenization
por: Ucak, Umit V., et al.
Publicado: (2023)