Cargando…

Effect of nicotinamide riboside on lipid metabolism and gut microflora‐bile acid axis in alcohol‐exposed mice

Alcoholic liver disease (ALD) is the most common complication of alcohol abuse, while we lack safe and effective treatment for ALD. This study aimed to explore the effects of nicotinamide riboside (NR) on lipid metabolism and gut microflora‐bile acid axis in alcohol‐exposed mice. NR significantly im...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Xiao, Xue, Meilan, Liu, Ying, Zhou, Zhitong, Jiang, Yushan, Sun, Ting, Liang, Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802554/
https://www.ncbi.nlm.nih.gov/pubmed/33473304
http://dx.doi.org/10.1002/fsn3.2007
Descripción
Sumario:Alcoholic liver disease (ALD) is the most common complication of alcohol abuse, while we lack safe and effective treatment for ALD. This study aimed to explore the effects of nicotinamide riboside (NR) on lipid metabolism and gut microflora‐bile acid axis in alcohol‐exposed mice. NR significantly improved liver histopathological damage and abnormal liver function. NR as a provider of nicotinamide adenine dinucleotide (NAD+) increased the NAD+/NADH ratio. Meanwhile, NR inhibited the activation of the protein phosphatase 1 signaling pathway, decreased the liver triglyceride and total bile acid levels, and reduced lipid accumulation. According to the results of gut microflora species analysis, NR intervention changed the microbial community structure at the phylum, family and genus levels, and the species abundances returned to a level similar to these of the normal control group. Besides, the results of high‐performance liquid chromatograph‐mass spectrometry showed that NR intervention resulted in fecal bile acid levels tending to be normal with decreased chenodeoxycholic acid level and increased deoxycholic acid and hyocholic acid levels. Spearman's correlation analysis showed a correlation between gut microflora and bile acids. Therefore, NR supplementation has the potential to prevent ALD, and its mechanism may be related to regulating lipid metabolism disorders and the gut microflora‐bile acid axis.