Cargando…
Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng
BACKGROUND: The purpose of this study was to investigate the effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng and to select the most suitable screw configuration for the processing of ginseng. METHOD: The extrusion conditions were set as follows: moi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802574/ https://www.ncbi.nlm.nih.gov/pubmed/33473289 http://dx.doi.org/10.1002/fsn3.1991 |
_version_ | 1783635786779852800 |
---|---|
author | Zhang, Yu Jin, Tie Ryu, Gihyung Gao, Yuxuan |
author_facet | Zhang, Yu Jin, Tie Ryu, Gihyung Gao, Yuxuan |
author_sort | Zhang, Yu |
collection | PubMed |
description | BACKGROUND: The purpose of this study was to investigate the effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng and to select the most suitable screw configuration for the processing of ginseng. METHOD: The extrusion conditions were set as follows: moisture content (20%), barrel temperature (140°C), screw speed (200 rpm), and feeding rate (100 g/min). RESULT: The extruded ginseng of screw configuration 6 has the highest DPPH free radical scavenging rate, reducing power and total phenol, which is the most suitable configuration for the development of ginseng extract products. In addition, the extruded ginseng of screw configuration 9 has the highest content of total saponin, and the content of rare ginsenoside Rg3 which is scarcely present in the ginseng raw material powder was significantly increased. This intended that twin‐screw extrusion process enables the mutual conversion between ginsenosides and rare ginsenoside Rg3 had achieved. CONCLUSION: The extrusion process promotes the development and utilization of ginseng and provides theoretical basis for the design and development of screw configuration of twin‐screw extruded ginseng. |
format | Online Article Text |
id | pubmed-7802574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78025742021-01-19 Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng Zhang, Yu Jin, Tie Ryu, Gihyung Gao, Yuxuan Food Sci Nutr Original Research BACKGROUND: The purpose of this study was to investigate the effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng and to select the most suitable screw configuration for the processing of ginseng. METHOD: The extrusion conditions were set as follows: moisture content (20%), barrel temperature (140°C), screw speed (200 rpm), and feeding rate (100 g/min). RESULT: The extruded ginseng of screw configuration 6 has the highest DPPH free radical scavenging rate, reducing power and total phenol, which is the most suitable configuration for the development of ginseng extract products. In addition, the extruded ginseng of screw configuration 9 has the highest content of total saponin, and the content of rare ginsenoside Rg3 which is scarcely present in the ginseng raw material powder was significantly increased. This intended that twin‐screw extrusion process enables the mutual conversion between ginsenosides and rare ginsenoside Rg3 had achieved. CONCLUSION: The extrusion process promotes the development and utilization of ginseng and provides theoretical basis for the design and development of screw configuration of twin‐screw extruded ginseng. John Wiley and Sons Inc. 2020-11-21 /pmc/articles/PMC7802574/ /pubmed/33473289 http://dx.doi.org/10.1002/fsn3.1991 Text en © 2020 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Zhang, Yu Jin, Tie Ryu, Gihyung Gao, Yuxuan Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng |
title | Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng |
title_full | Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng |
title_fullStr | Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng |
title_full_unstemmed | Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng |
title_short | Effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng |
title_sort | effects of screw configuration on chemical properties and ginsenosides content of extruded ginseng |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802574/ https://www.ncbi.nlm.nih.gov/pubmed/33473289 http://dx.doi.org/10.1002/fsn3.1991 |
work_keys_str_mv | AT zhangyu effectsofscrewconfigurationonchemicalpropertiesandginsenosidescontentofextrudedginseng AT jintie effectsofscrewconfigurationonchemicalpropertiesandginsenosidescontentofextrudedginseng AT ryugihyung effectsofscrewconfigurationonchemicalpropertiesandginsenosidescontentofextrudedginseng AT gaoyuxuan effectsofscrewconfigurationonchemicalpropertiesandginsenosidescontentofextrudedginseng |