Cargando…
A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells
BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) and the transforming growth factor-β (TGF-β) signaling pathway play important roles in colorectal tumorigenesis and progress. However, the underlying regulatory mechanisms between NAMPT and TGF-β signaling in colorectal cancer (CRC) remain p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802777/ https://www.ncbi.nlm.nih.gov/pubmed/33447060 http://dx.doi.org/10.2147/OTT.S282367 |
_version_ | 1783635813218648064 |
---|---|
author | Lv, Xiaoqun Zhang, Jinguo Zhang, Jun Guan, Wencai Ren, Weifang Liu, Yujuan Xu, Guoxiong |
author_facet | Lv, Xiaoqun Zhang, Jinguo Zhang, Jun Guan, Wencai Ren, Weifang Liu, Yujuan Xu, Guoxiong |
author_sort | Lv, Xiaoqun |
collection | PubMed |
description | BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) and the transforming growth factor-β (TGF-β) signaling pathway play important roles in colorectal tumorigenesis and progress. However, the underlying regulatory mechanisms between NAMPT and TGF-β signaling in colorectal cancer (CRC) remain poorly understood. METHODS: Public data were extracted from the Oncomine database and the PrognoScan database to investigate the mRNA expression and the prognostic value of NAMPT, respectively, in CRC. Western blot tests were performed to detect Smad2, Smad3, p-Smad2, p-Smad3, Smad4 expression in CRC cells transfected with human NAMPT-siRNA or NAMPT-overexpressing plasmid. TGF-β1 concentrations in culture supernatants were assayed using ELISA kits. The effect of TGF-β1 on NAMPT expression was evaluated by quantitative real-time PCR and Western blot. The dual-luciferase reporter assay was employed to confirm the binding of miR-1-3p to NAMPT 3ʹ-UTR. Subsequently, NAMPT levels in HCT116 cells transfected with the mimics and inhibitors of miR-1-3p were detected by quantitative real-time PCR and Western blot. RESULTS: NAMPT was overexpressed in human CRC and was correlated with short overall survival. NAMPT increased the protein expression levels of components in the TGF-β signaling pathway including Smad2, Smad3, and Smad4. Moreover, NAMPT promoted TGF-β1 secretion. Intriguingly, the TGF-β1 treatment down-regulated NAMPT expression at mRNA and protein levels in CRC cells which were partly through the up-regulation of miR-1-3p that directly bound to the NAMPT 3ʹ-UTR. These outcomes demonstrated that NAMPT was a downstream target of miR-1-3p and there was a negative association between NAMPT and miR-1-3p in CRC. CONCLUSION: There is a negative feedback loop between NAMPT and the TGF-β signaling pathway in CRC cells, providing new insight into the mechanism underlying the regulatory pathways in CRC. |
format | Online Article Text |
id | pubmed-7802777 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-78027772021-01-13 A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells Lv, Xiaoqun Zhang, Jinguo Zhang, Jun Guan, Wencai Ren, Weifang Liu, Yujuan Xu, Guoxiong Onco Targets Ther Original Research BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT) and the transforming growth factor-β (TGF-β) signaling pathway play important roles in colorectal tumorigenesis and progress. However, the underlying regulatory mechanisms between NAMPT and TGF-β signaling in colorectal cancer (CRC) remain poorly understood. METHODS: Public data were extracted from the Oncomine database and the PrognoScan database to investigate the mRNA expression and the prognostic value of NAMPT, respectively, in CRC. Western blot tests were performed to detect Smad2, Smad3, p-Smad2, p-Smad3, Smad4 expression in CRC cells transfected with human NAMPT-siRNA or NAMPT-overexpressing plasmid. TGF-β1 concentrations in culture supernatants were assayed using ELISA kits. The effect of TGF-β1 on NAMPT expression was evaluated by quantitative real-time PCR and Western blot. The dual-luciferase reporter assay was employed to confirm the binding of miR-1-3p to NAMPT 3ʹ-UTR. Subsequently, NAMPT levels in HCT116 cells transfected with the mimics and inhibitors of miR-1-3p were detected by quantitative real-time PCR and Western blot. RESULTS: NAMPT was overexpressed in human CRC and was correlated with short overall survival. NAMPT increased the protein expression levels of components in the TGF-β signaling pathway including Smad2, Smad3, and Smad4. Moreover, NAMPT promoted TGF-β1 secretion. Intriguingly, the TGF-β1 treatment down-regulated NAMPT expression at mRNA and protein levels in CRC cells which were partly through the up-regulation of miR-1-3p that directly bound to the NAMPT 3ʹ-UTR. These outcomes demonstrated that NAMPT was a downstream target of miR-1-3p and there was a negative association between NAMPT and miR-1-3p in CRC. CONCLUSION: There is a negative feedback loop between NAMPT and the TGF-β signaling pathway in CRC cells, providing new insight into the mechanism underlying the regulatory pathways in CRC. Dove 2021-01-08 /pmc/articles/PMC7802777/ /pubmed/33447060 http://dx.doi.org/10.2147/OTT.S282367 Text en © 2021 Lv et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Lv, Xiaoqun Zhang, Jinguo Zhang, Jun Guan, Wencai Ren, Weifang Liu, Yujuan Xu, Guoxiong A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells |
title | A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells |
title_full | A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells |
title_fullStr | A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells |
title_full_unstemmed | A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells |
title_short | A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells |
title_sort | negative feedback loop between nampt and tgf-β signaling pathway in colorectal cancer cells |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802777/ https://www.ncbi.nlm.nih.gov/pubmed/33447060 http://dx.doi.org/10.2147/OTT.S282367 |
work_keys_str_mv | AT lvxiaoqun anegativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT zhangjinguo anegativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT zhangjun anegativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT guanwencai anegativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT renweifang anegativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT liuyujuan anegativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT xuguoxiong anegativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT lvxiaoqun negativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT zhangjinguo negativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT zhangjun negativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT guanwencai negativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT renweifang negativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT liuyujuan negativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells AT xuguoxiong negativefeedbackloopbetweennamptandtgfbsignalingpathwayincolorectalcancercells |