Cargando…

Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound

BACKGROUND: Therapy for glioblastoma (GBM) has always been very challenging, not only because of the presence of the blood-brain barrier (BBB) but also due to susceptibility to drug resistance. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRI...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Qiang, Zhou, Yanghao, Chen, Jin, Huang, Ning, Wang, Zhigang, Cheng, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802796/
https://www.ncbi.nlm.nih.gov/pubmed/33447034
http://dx.doi.org/10.2147/IJN.S286221
_version_ 1783635817221062656
author Yang, Qiang
Zhou, Yanghao
Chen, Jin
Huang, Ning
Wang, Zhigang
Cheng, Yuan
author_facet Yang, Qiang
Zhou, Yanghao
Chen, Jin
Huang, Ning
Wang, Zhigang
Cheng, Yuan
author_sort Yang, Qiang
collection PubMed
description BACKGROUND: Therapy for glioblastoma (GBM) has always been very challenging, not only because of the presence of the blood-brain barrier (BBB) but also due to susceptibility to drug resistance. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) has revolutionized gene editing technology and is capable of treating a variety of genetic diseases, including human tumors, but there is a lack of safe and effective targeting delivery systems in vivo, especially in the central nervous system (CNS). METHODS: Lipid-polymer hybrid nanoparticles (LPHNs-cRGD) were constructed for efficient and targeting delivery of CRISPR/Cas9 plasmids targeting O6-methylguanine-DNA methyltransferase (MGMT), a drug-resistance gene to temozolomide (TMZ). Focused ultrasound (FUS)-microbubbles (MBs) were used to non-invasively and locally open the BBB to further facilitate gene delivery into glioblastoma in vivo. The gene editing efficiency and drug sensitivity changes were evaluated both in vitro and in vivo. RESULTS: The gene-loaded LPHNs-cRGD were successfully synthesized and could protect pCas9/MGMT from enzyme degradation. LPHNs-cRGD could target GBM cells and mediate the transfection of pCas9/MGMT to downregulate the expression of MGMT, resulting in an increased sensitivity of GBM cells to TMZ. MBs-LPHNs-cRGD complexes could safely and locally increase the permeability of the BBB with FUS irradiation in vivo and facilitated the accumulation of nanoparticles at the tumor region in orthotopic tumor-bearing mice. Furthermore, the FUS-assisted MBs-LPHNs(pCas9/MGMT)-cRGD enhanced the therapeutic effects of TMZ in glioblastoma, inhibited tumor growth, and prolonged survival of tumor-bearing mice, with a high level of biosafety. CONCLUSION: In this work, we constructed LPHNs-cRGD for targeting delivery of the CRISPR/Cas9 system, in combination with FUS-MBs to open the BBB. The MBs-LPHNs-cRGD delivery system could be a potential alternative for efficient targeting gene delivery for the treatment of glioblastoma.
format Online
Article
Text
id pubmed-7802796
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Dove
record_format MEDLINE/PubMed
spelling pubmed-78027962021-01-13 Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound Yang, Qiang Zhou, Yanghao Chen, Jin Huang, Ning Wang, Zhigang Cheng, Yuan Int J Nanomedicine Original Research BACKGROUND: Therapy for glioblastoma (GBM) has always been very challenging, not only because of the presence of the blood-brain barrier (BBB) but also due to susceptibility to drug resistance. Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) has revolutionized gene editing technology and is capable of treating a variety of genetic diseases, including human tumors, but there is a lack of safe and effective targeting delivery systems in vivo, especially in the central nervous system (CNS). METHODS: Lipid-polymer hybrid nanoparticles (LPHNs-cRGD) were constructed for efficient and targeting delivery of CRISPR/Cas9 plasmids targeting O6-methylguanine-DNA methyltransferase (MGMT), a drug-resistance gene to temozolomide (TMZ). Focused ultrasound (FUS)-microbubbles (MBs) were used to non-invasively and locally open the BBB to further facilitate gene delivery into glioblastoma in vivo. The gene editing efficiency and drug sensitivity changes were evaluated both in vitro and in vivo. RESULTS: The gene-loaded LPHNs-cRGD were successfully synthesized and could protect pCas9/MGMT from enzyme degradation. LPHNs-cRGD could target GBM cells and mediate the transfection of pCas9/MGMT to downregulate the expression of MGMT, resulting in an increased sensitivity of GBM cells to TMZ. MBs-LPHNs-cRGD complexes could safely and locally increase the permeability of the BBB with FUS irradiation in vivo and facilitated the accumulation of nanoparticles at the tumor region in orthotopic tumor-bearing mice. Furthermore, the FUS-assisted MBs-LPHNs(pCas9/MGMT)-cRGD enhanced the therapeutic effects of TMZ in glioblastoma, inhibited tumor growth, and prolonged survival of tumor-bearing mice, with a high level of biosafety. CONCLUSION: In this work, we constructed LPHNs-cRGD for targeting delivery of the CRISPR/Cas9 system, in combination with FUS-MBs to open the BBB. The MBs-LPHNs-cRGD delivery system could be a potential alternative for efficient targeting gene delivery for the treatment of glioblastoma. Dove 2021-01-08 /pmc/articles/PMC7802796/ /pubmed/33447034 http://dx.doi.org/10.2147/IJN.S286221 Text en © 2021 Yang et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).
spellingShingle Original Research
Yang, Qiang
Zhou, Yanghao
Chen, Jin
Huang, Ning
Wang, Zhigang
Cheng, Yuan
Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound
title Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound
title_full Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound
title_fullStr Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound
title_full_unstemmed Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound
title_short Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanoparticles Combined with Focused Ultrasound
title_sort gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802796/
https://www.ncbi.nlm.nih.gov/pubmed/33447034
http://dx.doi.org/10.2147/IJN.S286221
work_keys_str_mv AT yangqiang genetherapyfordrugresistantglioblastomavialipidpolymerhybridnanoparticlescombinedwithfocusedultrasound
AT zhouyanghao genetherapyfordrugresistantglioblastomavialipidpolymerhybridnanoparticlescombinedwithfocusedultrasound
AT chenjin genetherapyfordrugresistantglioblastomavialipidpolymerhybridnanoparticlescombinedwithfocusedultrasound
AT huangning genetherapyfordrugresistantglioblastomavialipidpolymerhybridnanoparticlescombinedwithfocusedultrasound
AT wangzhigang genetherapyfordrugresistantglioblastomavialipidpolymerhybridnanoparticlescombinedwithfocusedultrasound
AT chengyuan genetherapyfordrugresistantglioblastomavialipidpolymerhybridnanoparticlescombinedwithfocusedultrasound