Cargando…
Machine learning and statistics to qualify environments through multi-traits in Coffea arabica
Several factors such as genotype, environment, and post-harvest processing can affect the responses of important traits in the coffee production chain. Determining the influence of these factors is of great relevance, as they can be indicators of the characteristics of the coffee produced. The most...
Autores principales: | da Costa, Weverton Gomes, Barbosa, Ivan de Paiva, de Souza, Jacqueline Enequio, Cruz, Cosme Damião, Nascimento, Moysés, de Oliveira, Antonio Carlos Baião |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802962/ https://www.ncbi.nlm.nih.gov/pubmed/33434204 http://dx.doi.org/10.1371/journal.pone.0245298 |
Ejemplares similares
-
Marker-Assisted Recurrent Selection for Pyramiding Leaf Rust and Coffee Berry Disease Resistance Alleles in Coffea arabica L.
por: Saavedra, Laura Maritza, et al.
Publicado: (2023) -
Genomic prediction through machine learning and neural networks for traits with epistasis
por: Costa, Weverton Gomes da, et al.
Publicado: (2022) -
Early Selection Enabled by the Implementation of Genomic Selection in Coffea arabica Breeding
por: Sousa, Tiago Vieira, et al.
Publicado: (2019) -
Microbiomes associated with Coffea arabica and Coffea canephora in four different floristic domains of Brazil
por: Veloso, Tomás Gomes Reis, et al.
Publicado: (2023) -
Identification of novel and conserved microRNAs in Coffea canephora and Coffea arabica
por: Loss-Morais, Guilherme, et al.
Publicado: (2014)