Cargando…
Hydrodynamic stress maps on the surface of a flexible fin-like foil
We determine the time dependence of pressure and shear stress distributions on the surface of a pitching and deforming hydrofoil from measurements of the three dimensional flow field. Period-averaged stress maps are obtained both in the presence and absence of steady flow around the foil. The veloci...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802974/ https://www.ncbi.nlm.nih.gov/pubmed/33434237 http://dx.doi.org/10.1371/journal.pone.0244674 |
_version_ | 1783635852582191104 |
---|---|
author | Dagenais, Paule Aegerter, Christof M. |
author_facet | Dagenais, Paule Aegerter, Christof M. |
author_sort | Dagenais, Paule |
collection | PubMed |
description | We determine the time dependence of pressure and shear stress distributions on the surface of a pitching and deforming hydrofoil from measurements of the three dimensional flow field. Period-averaged stress maps are obtained both in the presence and absence of steady flow around the foil. The velocity vector field is determined via volumetric three-component particle tracking velocimetry and subsequently inserted into the Navier-Stokes equation to calculate the total hydrodynamic stress tensor. In addition, we also present a careful error analysis of such measurements, showing that local evaluations of stress distributions are possible. The consistency of the force time-dependence is verified using a control volume analysis. The flapping foil used in the experiments is designed to allow comparison with a small trapezoidal fish fin, in terms of the scaling laws that govern the oscillatory flow regime. As a complementary approach, unsteady Euler-Bernoulli beam theory is employed to derive instantaneous transversal force distributions on the flexible hydrofoil from its deflection and the results are compared to the spatial distributions of hydrodynamic stresses obtained from the fluid velocity field. |
format | Online Article Text |
id | pubmed-7802974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-78029742021-01-25 Hydrodynamic stress maps on the surface of a flexible fin-like foil Dagenais, Paule Aegerter, Christof M. PLoS One Research Article We determine the time dependence of pressure and shear stress distributions on the surface of a pitching and deforming hydrofoil from measurements of the three dimensional flow field. Period-averaged stress maps are obtained both in the presence and absence of steady flow around the foil. The velocity vector field is determined via volumetric three-component particle tracking velocimetry and subsequently inserted into the Navier-Stokes equation to calculate the total hydrodynamic stress tensor. In addition, we also present a careful error analysis of such measurements, showing that local evaluations of stress distributions are possible. The consistency of the force time-dependence is verified using a control volume analysis. The flapping foil used in the experiments is designed to allow comparison with a small trapezoidal fish fin, in terms of the scaling laws that govern the oscillatory flow regime. As a complementary approach, unsteady Euler-Bernoulli beam theory is employed to derive instantaneous transversal force distributions on the flexible hydrofoil from its deflection and the results are compared to the spatial distributions of hydrodynamic stresses obtained from the fluid velocity field. Public Library of Science 2021-01-12 /pmc/articles/PMC7802974/ /pubmed/33434237 http://dx.doi.org/10.1371/journal.pone.0244674 Text en © 2021 Dagenais, Aegerter http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Dagenais, Paule Aegerter, Christof M. Hydrodynamic stress maps on the surface of a flexible fin-like foil |
title | Hydrodynamic stress maps on the surface of a flexible fin-like foil |
title_full | Hydrodynamic stress maps on the surface of a flexible fin-like foil |
title_fullStr | Hydrodynamic stress maps on the surface of a flexible fin-like foil |
title_full_unstemmed | Hydrodynamic stress maps on the surface of a flexible fin-like foil |
title_short | Hydrodynamic stress maps on the surface of a flexible fin-like foil |
title_sort | hydrodynamic stress maps on the surface of a flexible fin-like foil |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802974/ https://www.ncbi.nlm.nih.gov/pubmed/33434237 http://dx.doi.org/10.1371/journal.pone.0244674 |
work_keys_str_mv | AT dagenaispaule hydrodynamicstressmapsonthesurfaceofaflexiblefinlikefoil AT aegerterchristofm hydrodynamicstressmapsonthesurfaceofaflexiblefinlikefoil |