Cargando…
MiR-223/NFAT5 signaling suppresses arterial smooth muscle cell proliferation and motility in vitro
Aberrant proliferation and migration of vascular smooth muscle cells contributes to cardiovascular diseases (CVDs), including atherosclerosis. MicroRNA-223 (miR-223) protects against atherosclerotic CVDs. We investigated the contribution of miR-223 to platelet-derived growth factor-BB (PDGF-BB)-indu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803580/ https://www.ncbi.nlm.nih.gov/pubmed/33373321 http://dx.doi.org/10.18632/aging.202395 |
Sumario: | Aberrant proliferation and migration of vascular smooth muscle cells contributes to cardiovascular diseases (CVDs), including atherosclerosis. MicroRNA-223 (miR-223) protects against atherosclerotic CVDs. We investigated the contribution of miR-223 to platelet-derived growth factor-BB (PDGF-BB)-induced proliferation and migration of human aortic smooth muscle cells (HASMCs). We found that miR-223 was downregulated in PDGF-BB-treated HASMCs in a dose- and time-dependent manner, while nuclear factor of activated T cells 5 (NFAT5) was upregulated. Gain- and loss-of-function studies demonstrated that miR-223 treatment reduced PDGF-BB-induced HASMC proliferation and motility, whereas miR-223 inhibitor enhanced these processes. Moreover, NFAT5 was identified as a direct target of miR-223 in HASMC. The inhibitory effects of miR-223 on HASMC proliferation and migration were partly rescued by NFAT5 restoration. Overall, these findings suggest that miR-223 inhibits the PDGF-BB-induced proliferation and motility of HASMCs by targeting NFAT5 and that miR-223 and NFAT5 may be potential therapeutic targets for atherosclerosis. |
---|