Cargando…

Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil

COVID-19 is affecting healthcare resources worldwide, with lower and middle-income countries being particularly disadvantaged to mitigate the challenges imposed by the disease, including the availability of a sufficient number of infirmary/ICU hospital beds, ventilators, and medical supplies. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Oliveira, Juliane F., Jorge, Daniel C. P., Veiga, Rafael V., Rodrigues, Moreno S., Torquato, Matheus F., da Silva, Nivea B., Fiaccone, Rosemeire L., Cardim, Luciana L., Pereira, Felipe A. C., de Castro, Caio P., Paiva, Aureliano S. S., Amad, Alan A. S., Lima, Ernesto A. B. F., Souza, Diego S., Pinho, Suani T. R., Ramos, Pablo Ivan P., Andrade, Roberto F. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803757/
https://www.ncbi.nlm.nih.gov/pubmed/33436608
http://dx.doi.org/10.1038/s41467-020-19798-3
_version_ 1783636012500516864
author Oliveira, Juliane F.
Jorge, Daniel C. P.
Veiga, Rafael V.
Rodrigues, Moreno S.
Torquato, Matheus F.
da Silva, Nivea B.
Fiaccone, Rosemeire L.
Cardim, Luciana L.
Pereira, Felipe A. C.
de Castro, Caio P.
Paiva, Aureliano S. S.
Amad, Alan A. S.
Lima, Ernesto A. B. F.
Souza, Diego S.
Pinho, Suani T. R.
Ramos, Pablo Ivan P.
Andrade, Roberto F. S.
author_facet Oliveira, Juliane F.
Jorge, Daniel C. P.
Veiga, Rafael V.
Rodrigues, Moreno S.
Torquato, Matheus F.
da Silva, Nivea B.
Fiaccone, Rosemeire L.
Cardim, Luciana L.
Pereira, Felipe A. C.
de Castro, Caio P.
Paiva, Aureliano S. S.
Amad, Alan A. S.
Lima, Ernesto A. B. F.
Souza, Diego S.
Pinho, Suani T. R.
Ramos, Pablo Ivan P.
Andrade, Roberto F. S.
author_sort Oliveira, Juliane F.
collection PubMed
description COVID-19 is affecting healthcare resources worldwide, with lower and middle-income countries being particularly disadvantaged to mitigate the challenges imposed by the disease, including the availability of a sufficient number of infirmary/ICU hospital beds, ventilators, and medical supplies. Here, we use mathematical modelling to study the dynamics of COVID-19 in Bahia, a state in northeastern Brazil, considering the influences of asymptomatic/non-detected cases, hospitalizations, and mortality. The impacts of policies on the transmission rate were also examined. Our results underscore the difficulties in maintaining a fully operational health infrastructure amidst the pandemic. Lowering the transmission rate is paramount to this objective, but current local efforts, leading to a 36% decrease, remain insufficient to prevent systemic collapse at peak demand, which could be accomplished using periodic interventions. Non-detected cases contribute to a ∽55% increase in R(0). Finally, we discuss our results in light of epidemiological data that became available after the initial analyses.
format Online
Article
Text
id pubmed-7803757
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78037572021-01-21 Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil Oliveira, Juliane F. Jorge, Daniel C. P. Veiga, Rafael V. Rodrigues, Moreno S. Torquato, Matheus F. da Silva, Nivea B. Fiaccone, Rosemeire L. Cardim, Luciana L. Pereira, Felipe A. C. de Castro, Caio P. Paiva, Aureliano S. S. Amad, Alan A. S. Lima, Ernesto A. B. F. Souza, Diego S. Pinho, Suani T. R. Ramos, Pablo Ivan P. Andrade, Roberto F. S. Nat Commun Article COVID-19 is affecting healthcare resources worldwide, with lower and middle-income countries being particularly disadvantaged to mitigate the challenges imposed by the disease, including the availability of a sufficient number of infirmary/ICU hospital beds, ventilators, and medical supplies. Here, we use mathematical modelling to study the dynamics of COVID-19 in Bahia, a state in northeastern Brazil, considering the influences of asymptomatic/non-detected cases, hospitalizations, and mortality. The impacts of policies on the transmission rate were also examined. Our results underscore the difficulties in maintaining a fully operational health infrastructure amidst the pandemic. Lowering the transmission rate is paramount to this objective, but current local efforts, leading to a 36% decrease, remain insufficient to prevent systemic collapse at peak demand, which could be accomplished using periodic interventions. Non-detected cases contribute to a ∽55% increase in R(0). Finally, we discuss our results in light of epidemiological data that became available after the initial analyses. Nature Publishing Group UK 2021-01-12 /pmc/articles/PMC7803757/ /pubmed/33436608 http://dx.doi.org/10.1038/s41467-020-19798-3 Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Oliveira, Juliane F.
Jorge, Daniel C. P.
Veiga, Rafael V.
Rodrigues, Moreno S.
Torquato, Matheus F.
da Silva, Nivea B.
Fiaccone, Rosemeire L.
Cardim, Luciana L.
Pereira, Felipe A. C.
de Castro, Caio P.
Paiva, Aureliano S. S.
Amad, Alan A. S.
Lima, Ernesto A. B. F.
Souza, Diego S.
Pinho, Suani T. R.
Ramos, Pablo Ivan P.
Andrade, Roberto F. S.
Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_full Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_fullStr Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_full_unstemmed Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_short Mathematical modeling of COVID-19 in 14.8 million individuals in Bahia, Brazil
title_sort mathematical modeling of covid-19 in 14.8 million individuals in bahia, brazil
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803757/
https://www.ncbi.nlm.nih.gov/pubmed/33436608
http://dx.doi.org/10.1038/s41467-020-19798-3
work_keys_str_mv AT oliveirajulianef mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT jorgedanielcp mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT veigarafaelv mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT rodriguesmorenos mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT torquatomatheusf mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT dasilvaniveab mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT fiacconerosemeirel mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT cardimlucianal mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT pereirafelipeac mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT decastrocaiop mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT paivaaurelianoss mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT amadalanas mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT limaernestoabf mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT souzadiegos mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT pinhosuanitr mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT ramospabloivanp mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil
AT andraderobertofs mathematicalmodelingofcovid19in148millionindividualsinbahiabrazil