Cargando…
Spontaneous sparse learning for PCM-based memristor neural networks
Neural networks trained by backpropagation have achieved tremendous successes on numerous intelligent tasks. However, naïve gradient-based training and updating methods on memristors impede applications due to intrinsic material properties. Here, we built a 39 nm 1 Gb phase change memory (PCM) memri...
Autores principales: | Lim, Dong-Hyeok, Wu, Shuang, Zhao, Rong, Lee, Jung-Hoon, Jeong, Hongsik, Shi, Luping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803975/ https://www.ncbi.nlm.nih.gov/pubmed/33436611 http://dx.doi.org/10.1038/s41467-020-20519-z |
Ejemplares similares
-
Enabling an Integrated Rate-temporal Learning Scheme on Memristor
por: He, Wei, et al.
Publicado: (2014) -
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
por: Li, Can, et al.
Publicado: (2018) -
Memristor networks for real-time neural activity analysis
por: Zhu, Xiaojian, et al.
Publicado: (2020) -
Equilibrium Propagation for Memristor-Based Recurrent Neural Networks
por: Zoppo, Gianluca, et al.
Publicado: (2020) -
ROA: A Rapid Learning Scheme for In-Situ Memristor Networks
por: Zhang, Wenli, et al.
Publicado: (2021)