Cargando…
Sequential transfer learning based on hierarchical clustering for improved performance in deep learning based food segmentation
Accurately segmenting foods from optical images is a challenging task, yet becoming possible with the help of recent advances in Deep Learning based solutions. Automated identification of food items opens up possibilities of useful applications like nutrition intake monitoring. Given large variation...
Autores principales: | Siemon, Mia S. N., Shihavuddin, A. S. M., Ravn-Haren, Gitte |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7803986/ https://www.ncbi.nlm.nih.gov/pubmed/33436650 http://dx.doi.org/10.1038/s41598-020-79677-1 |
Ejemplares similares
-
Vitamin D Food Fortification Strategies on Population-Based Dietary Intake Data Using Mixed-Integer Programming
por: Sengupta, Sayantan, et al.
Publicado: (2023) -
Deep LSTM-Based Transfer Learning Approach for Coherent Forecasts in Hierarchical Time Series
por: Sagheer, Alaa, et al.
Publicado: (2021) -
Hierarchical deep learning models using transfer learning for disease detection and classification based on small number of medical images
por: An, Guangzhou, et al.
Publicado: (2021) -
Greenotyper: Image-Based Plant Phenotyping Using Distributed Computing and Deep Learning
por: Tausen, Marni, et al.
Publicado: (2020) -
Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images
por: Nunez-Iglesias, Juan, et al.
Publicado: (2013)