Cargando…

A preliminary study of post-progressive nail-art effects on in vivo nail plate using optical coherence tomography-based intensity profiling assessment

Nail beautification is a widely applied gender independent practice. Excessive nail beautifications and nail-arts have a direct impact on the nail structure and can cause nail disorders. Therefore, the assessment of post-progressive nail-art effects on the nail is essential to maintain optimal nail...

Descripción completa

Detalles Bibliográficos
Autores principales: Saleah, Sm Abu, Kim, Pilun, Seong, Daewoon, Wijesinghe, Ruchire Eranga, Jeon, Mansik, Kim, Jeehyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804019/
https://www.ncbi.nlm.nih.gov/pubmed/33436674
http://dx.doi.org/10.1038/s41598-020-79497-3
Descripción
Sumario:Nail beautification is a widely applied gender independent practice. Excessive nail beautifications and nail-arts have a direct impact on the nail structure and can cause nail disorders. Therefore, the assessment of post-progressive nail-art effects on the nail is essential to maintain optimal nail health and to avoid any undesirable disorders. In this study, in vivo nails were examined in control stage, with a nail-art stage, and after removing the nail-art stage using a 1310 nm spectral-domain optical coherence tomography (SD-OCT) system. The acquired cross-sectional OCT images were analyzed by a laboratory customized signal processing algorithm to obtain scattered intensity profiling assessments that could reveal the effects of nail beautification on the nail plate. The formation and progression of cracks on the nail plate surface were detected as an effect of nail beautification after 72 h of nail-art removal. Changes in backscattered light intensity and nail plate thickness of control and art-removed nails were quantitatively compared. The results revealed the potential feasibility of the developed OCT-based inspection procedure to diagnose post-progressive nail-art effects on in vivo nail plate, which can be helpful to prevent nail plate damages during art removal through real-time monitoring of the boundary between the nail plate and nail-art. Besides nail-art effects, the developed method can also be used for the investigation of nail plate abnormalities by examining the inconsistency of internal and external nail plate structure, which can be diagnosed with both qualitative and quantitative assessments from a clinical perspective.