Cargando…

Evaluation of ruminal motility using an indwelling 3-axis accelerometer in the reticulum in cattle

Attempts to increase production and improve farm environments have been made for several years. Rumen motility (RM) is one of the biological parameters that provides essential information of individuals in ruminants, and it is usually evaluated by auscultation. The study was aimed to examine RM usin...

Descripción completa

Detalles Bibliográficos
Autores principales: CHOI, Woojae, RO, Younghye, HONG, Leegon, AHN, Sunmin, KIM, Heejin, CHOI, Changhyuk, KIM, Hakseung, KIM, Danil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japanese Society of Veterinary Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804031/
https://www.ncbi.nlm.nih.gov/pubmed/33162433
http://dx.doi.org/10.1292/jvms.20-0459
Descripción
Sumario:Attempts to increase production and improve farm environments have been made for several years. Rumen motility (RM) is one of the biological parameters that provides essential information of individuals in ruminants, and it is usually evaluated by auscultation. The study was aimed to examine RM using the 3-axis accelerometer (3XA) in cattle. The manufactured 3XA were placed in the reticulum (3XA-R) and implanted in the subcutaneous layer of the brisket (3XA-SC), respectively, and the accelerations were compared following intramuscular injection of xylazine (0.05 mg/kg) or saline in experiment 1 and of xylazine (0.05 mg/kg) or atropine (0.04 mg/kg) in experiment 2. In experiment 3, the dose-dependent decrease of RM was evaluated following xylazine administration (0, 0.05, 0.1 mg/kg) in the 3XA-R equipped cows via a 3 × 3 Latin square method. In experiment 1, saline-treated animals showed a continuous fluctuation while the frequency and amplitude of 3XA-R in xylazine-injected cows were reduced after administration. The acceleration of 3XA-SC was changed after administration, but not abruptly. Among the motion parameters, V2 was calculated only using X- and Z-axis acceleration in consideration of the cylindrical shape, and it showed the apparent difference between pre- and post-xylazine administration. In experiment 2, the V2 of 3XA-R was decreased after atropine administration while that of 3XA-SC was maintained. In experiment 3, a dose-dependent V2 decrement of 3XA-R after xylazine administration was observed and lasted for 40 and 80 min in doses of 0.05 mg/kg and 0.1 mg/kg, respectively. In conclusion, The 3XA detected the decrease in RM efficiently and processed the data wirelessly without interference from body movement. This technology will help detect problems early and prevent a decline in cattle productivity.