Cargando…
Pure non-local machine-learned density functional theory for electron correlation
Density-functional theory (DFT) is a rigorous and (in principle) exact framework for the description of the ground state properties of atoms, molecules and solids based on their electron density. While computationally efficient density-functional approximations (DFAs) have become essential tools in...
Autores principales: | Margraf, Johannes T., Reuter, Karsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804195/ https://www.ncbi.nlm.nih.gov/pubmed/33436595 http://dx.doi.org/10.1038/s41467-020-20471-y |
Ejemplares similares
-
Physics-inspired machine learning of localized intensive properties
por: Chen, Ke, et al.
Publicado: (2023) -
Machine learning in chemical reaction space
por: Stocker, Sina, et al.
Publicado: (2020) -
Data-efficient machine learning for molecular crystal structure prediction
por: Wengert, Simon, et al.
Publicado: (2021) -
A Hybrid Machine Learning Approach for Structure Stability
Prediction in Molecular Co-crystal Screenings
por: Wengert, Simon, et al.
Publicado: (2022) -
Machine learning accurate exchange and correlation functionals of the electronic density
por: Dick, Sebastian, et al.
Publicado: (2020)