Cargando…
Prediction of kinase inhibitors binding modes with machine learning and reduced descriptor sets
Protein kinases are receiving wide research interest, from drug perspective, due to their important roles in human body. Available kinase-inhibitor data, including crystallized structures, revealed many details about the mechanism of inhibition and binding modes. The understanding and analysis of th...
Autores principales: | Abdelbaky, Ibrahim, Tayara, Hilal, Chong, Kil To |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804204/ https://www.ncbi.nlm.nih.gov/pubmed/33436888 http://dx.doi.org/10.1038/s41598-020-80758-4 |
Ejemplares similares
-
An Explainable Supervised Machine Learning Model for Predicting Respiratory Toxicity of Chemicals Using Optimal Molecular Descriptors
por: Jaganathan, Keerthana, et al.
Publicado: (2022) -
Prediction of Drug-Induced Liver Toxicity Using SVM and Optimal Descriptor Sets
por: Jaganathan, Keerthana, et al.
Publicado: (2021) -
Identification of miRNA-Small Molecule Associations by Continuous Feature Representation Using Auto-Encoders
por: Abdelbaky, Ibrahim, et al.
Publicado: (2021) -
XML-CIMT: Explainable Machine Learning (XML) Model for Predicting Chemical-Induced Mitochondrial Toxicity
por: Jaganathan, Keerthana, et al.
Publicado: (2022) -
PUResNet: prediction of protein-ligand binding sites using deep residual neural network
por: Kandel, Jeevan, et al.
Publicado: (2021)