Cargando…
Descriptor selection for predicting interfacial thermal resistance by machine learning methods
Interfacial thermal resistance (ITR) is a critical property for the performance of nanostructured devices where phonon mean free paths are larger than the characteristic length scales. The affordable, accurate and reliable prediction of ITR is essential for material selection in thermal management....
Autores principales: | Tian, Xiaojuan, Chen, Mingguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804206/ https://www.ncbi.nlm.nih.gov/pubmed/33436976 http://dx.doi.org/10.1038/s41598-020-80795-z |
Ejemplares similares
-
Physical and chemical descriptors for predicting interfacial thermal resistance
por: Wu, Yen-Ju, et al.
Publicado: (2020) -
Author Correction: Physical and chemical descriptors for predicting interfacial thermal resistance
por: Wu, Yen-Ju, et al.
Publicado: (2020) -
Prediction of thermal boundary resistance by the machine learning method
por: Zhan, Tianzhuo, et al.
Publicado: (2017) -
Machine Learning Applications and Optimization of Clustering Methods Improve the Selection of Descriptors in Blackberry Germplasm Banks
por: Henao-Rojas, Juan Camilo, et al.
Publicado: (2021) -
Machine Learning Descriptors for Data‐Driven Catalysis Study
por: Mou, Li‐Hui, et al.
Publicado: (2023)